#include "darknet.h"
#include <sys/time.h>
#include <assert.h>
get_regression_values
float *get_regression_values(char **labels, int n)
{
float *v = calloc(n, sizeof(float));
int i;
for(i = 0; i < n; ++i){
char *p = strchr(labels[i], ' ');
*p = 0;
v[i] = atof(p+1);
}
return v;
}
ν¨μ μ΄λ¦: get_regression_values
μ
λ ₯:
char **labels (λ¬Έμμ΄ λ°°μ΄ ν¬μΈν°), int n (λΌλ²¨ κ°μ)
λμ:
λΌλ²¨ λ°°μ΄μμ μ«μ κ°λ§ μΆμΆνμ¬ float νμμΌλ‘ λ°ννλ ν¨μμ
λλ€.
μ€λͺ
:
λΌλ²¨ λ°°μ΄μμ μ«μ κ°μ μΆμΆνλ κ³Όμ μμ λ¬Έμμ΄ μ²λ¦¬λ₯Ό μνν©λλ€.
λΌλ²¨μ κ°μ μ«μμ 곡백μΌλ‘ μ΄λ£¨μ΄μ Έ μμΌλ©°, μ΄ ν¨μλ λ¬Έμμ΄μμ 곡백μ μ°Ύμμ ν΄λΉ μμΉλΆν° μ«μ κ°μΌλ‘ νμ±ν©λλ€.
νμ±λ κ°μ float νμμΌλ‘ λ°°μ΄μ μ μ₯λκ³ , μ΅μ’
μ μΌλ‘ λ°°μ΄ ν¬μΈν°κ° λ°νλ©λλ€.
train_classifier
void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
{
int i;
float avg_loss = -1;
char *base = basecfg(cfgfile);
printf("%s\n", base);
printf("%d\n", ngpus);
network **nets = calloc(ngpus, sizeof(network*));
srand(time(0));
int seed = rand();
for(i = 0; i < ngpus; ++i){
srand(seed);
#ifdef GPU
cuda_set_device(gpus[i]);
#endif
nets[i] = load_network(cfgfile, weightfile, clear);
nets[i]->learning_rate *= ngpus;
}
srand(time(0));
network *net = nets[0];
int imgs = net->batch * net->subdivisions * ngpus;
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
list *options = read_data_cfg(datacfg);
char *backup_directory = option_find_str(options, "backup", "/backup/");
int tag = option_find_int_quiet(options, "tag", 0);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *train_list = option_find_str(options, "train", "data/train.list");
char *tree = option_find_str(options, "tree", 0);
if (tree) net->hierarchy = read_tree(tree);
int classes = option_find_int(options, "classes", 2);
char **labels = 0;
if(!tag){
labels = get_labels(label_list);
}
list *plist = get_paths(train_list);
char **paths = (char **)list_to_array(plist);
printf("%d\n", plist->size);
int N = plist->size;
double time;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.threads = 32;
args.hierarchy = net->hierarchy;
args.min = net->min_ratio*net->w;
args.max = net->max_ratio*net->w;
printf("%d %d\n", args.min, args.max);
args.angle = net->angle;
args.aspect = net->aspect;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
args.size = net->w;
args.paths = paths;
args.classes = classes;
args.n = imgs;
args.m = N;
args.labels = labels;
if (tag){
args.type = TAG_DATA;
} else {
args.type = CLASSIFICATION_DATA;
}
data train;
data buffer;
pthread_t load_thread;
args.d = &buffer;
load_thread = load_data(args);
int count = 0;
int epoch = (*net->seen)/N;
while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
if(net->random && count++%40 == 0){
printf("Resizing\n");
int dim = (rand() % 11 + 4) * 32;
//if (get_current_batch(net)+200 > net->max_batches) dim = 608;
//int dim = (rand() % 4 + 16) * 32;
printf("%d\n", dim);
args.w = dim;
args.h = dim;
args.size = dim;
args.min = net->min_ratio*dim;
args.max = net->max_ratio*dim;
printf("%d %d\n", args.min, args.max);
pthread_join(load_thread, 0);
train = buffer;
free_data(train);
load_thread = load_data(args);
for(i = 0; i < ngpus; ++i){
resize_network(nets[i], dim, dim);
}
net = nets[0];
}
time = what_time_is_it_now();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data(args);
printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
time = what_time_is_it_now();
float loss = 0;
#ifdef GPU
if(ngpus == 1){
loss = train_network(net, train);
} else {
loss = train_networks(nets, ngpus, train, 4);
}
#else
loss = train_network(net, train);
#endif
if(avg_loss == -1) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
free_data(train);
if(*net->seen/N > epoch){
epoch = *net->seen/N;
char buff[256];
sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
save_weights(net, buff);
}
if(get_current_batch(net)%1000 == 0){
char buff[256];
sprintf(buff, "%s/%s.backup",backup_directory,base);
save_weights(net, buff);
}
}
char buff[256];
sprintf(buff, "%s/%s.weights", backup_directory, base);
save_weights(net, buff);
pthread_join(load_thread, 0);
free_network(net);
if(labels) free_ptrs((void**)labels, classes);
free_ptrs((void**)paths, plist->size);
free_list(plist);
free(base);
}
ν¨μ μ΄λ¦: train_classifier
μ
λ ₯:
datacfg: char ν¬μΈν°, λ°μ΄ν° μ€μ νμΌ κ²½λ‘
cfgfile: char ν¬μΈν°, λͺ¨λΈ μ€μ νμΌ κ²½λ‘
weightfile: char ν¬μΈν°, λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘
gpus: int ν¬μΈν°, μ¬μ©ν GPU λ²νΈ λ°°μ΄
ngpus: int, μ¬μ©ν GPU κ°μ
clear: int, λͺ¨λΈμ clearν μ§ μ¬λΆ (0μ΄λ©΄ clear μ ν¨, 1μ΄λ©΄ clear)
λμ:
μ£Όμ΄μ§ λ°μ΄ν°μ λͺ¨λΈ μ€μ μΌλ‘ λΆλ₯κΈ°λ₯Ό νμ΅μν€λ ν¨μμ
λλ€. νμ΅λ λͺ¨λΈ κ°μ€μΉλ μ§μ λ κ²½λ‘μ μ μ₯λ©λλ€.
μ€λͺ
:
ν¨μλ voidλ₯Ό λ°νν©λλ€.
ν¨μ λ΄λΆμμλ μ¬λ¬ κ°μ μ§μ λ³μλ€κ³Ό ν¬μΈν°λ€μ μ μΈνκ³ μ΄κΈ°νν©λλ€.
ν¨μμ μ€ν μ€κ°μλ λͺ¨λΈμ input μ΄λ―Έμ§λ₯Ό resizeνλ μμ
μ΄ μ΄λ£¨μ΄μ§λλ€.
νμ΅ κ³Όμ μμλ μ§μ λ λ°μ΄ν°μ
μ μ¬μ©νμ¬ λͺ¨λΈμ νμ΅μν€λ©°, λ§€ iterationλ§λ€ loss κ°μ κ³μ°ν©λλ€.
λ§€ 1000λ² iterationλ§λ€ νμ΅λ λͺ¨λΈ κ°μ€μΉλ₯Ό μ μ₯ν©λλ€.
λͺ¨λ iterationμ΄ μλ£λλ©΄ νμ΅λ λͺ¨λΈ κ°μ€μΉλ₯Ό μ μ₯ν©λλ€.
ν¨μ μ€ν μ€κ°μλ λ§μ print λ¬Έμ΄ μ‘΄μ¬νμ¬, νμ΅ κ³Όμ μμ μΌμ΄λλ μ¬λ¬ μΌλ€μ μΆμ νκΈ° μ½κ² ν©λλ€.
validate_classifier_crop
void validate_classifier_crop(char *datacfg, char *filename, char *weightfile)
{
int i = 0;
network *net = load_network(filename, weightfile, 0);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *valid_list = option_find_str(options, "valid", "data/train.list");
int classes = option_find_int(options, "classes", 2);
int topk = option_find_int(options, "top", 1);
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
float avg_acc = 0;
float avg_topk = 0;
int splits = m/1000;
int num = (i+1)*m/splits - i*m/splits;
data val, buffer;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.classes = classes;
args.n = num;
args.m = 0;
args.labels = labels;
args.d = &buffer;
args.type = OLD_CLASSIFICATION_DATA;
pthread_t load_thread = load_data_in_thread(args);
for(i = 1; i <= splits; ++i){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
num = (i+1)*m/splits - i*m/splits;
char **part = paths+(i*m/splits);
if(i != splits){
args.paths = part;
load_thread = load_data_in_thread(args);
}
printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
float *acc = network_accuracies(net, val, topk);
avg_acc += acc[0];
avg_topk += acc[1];
printf("%d: top 1: %f, top %d: %f, %lf seconds, %d images\n", i, avg_acc/i, topk, avg_topk/i, sec(clock()-time), val.X.rows);
free_data(val);
}
}
ν¨μ μ΄λ¦: validate_classifier_crop
μ
λ ₯:
datacfg: λ°μ΄ν° κ΅¬μ± νμΌ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°
filename: νμ΅λ λ€νΈμν¬ λͺ¨λΈ νμΌ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°
weightfile: νμ΅λ λ€νΈμν¬ λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°
λμ:
μ£Όμ΄μ§ νμ΅λ λ€νΈμν¬ λͺ¨λΈμ μ¬μ©νμ¬ μ΄λ―Έμ§ λΆλ₯κΈ°λ₯Ό κ²μ¦νλ ν¨μμ
λλ€. ν¨μλ μ£Όμ΄μ§ datacfg νμΌμ μ½μ΄ λ°μ΄ν° κ΅¬μ± μ 보λ₯Ό κ°μ Έμ΅λλ€.
λΌλ²¨ 리μ€νΈ νμΌ κ²½λ‘, κ²μ¦ λ°μ΄ν° 리μ€νΈ νμΌ κ²½λ‘, ν΄λμ€ μ, topk λ±μ μ€μ ν©λλ€. κ²μ¦ λ°μ΄ν°λ₯Ό μ¬λ¬ κ°μ λ―Έλ λ°°μΉλ‘ λλμ΄μ κ²μ¦μ μννλ©°, κ° λ―Έλ λ°°μΉλ³λ‘ μ νλλ₯Ό μΈ‘μ νκ³ νκ· μ νλμ νκ· topkλ₯Ό κ³μ°ν©λλ€.
μ€λͺ
:
μ΄ ν¨μλ YOLO (You Only Look Once) λ₯λ¬λ μκ³ λ¦¬μ¦μ ꡬνμ²΄μΈ Darknetμμ μ¬μ©λλ ν¨μμ
λλ€. Darknetμ μ΄λ―Έμ§ λΆλ₯, κ°μ²΄ κ²μΆ λ±μ μμ
μ μννλ λ₯λ¬λ νλ μμν¬μ
λλ€.
μ΄ ν¨μλ κ²μ¦ λ°μ΄ν°λ₯Ό μ΄μ©νμ¬ νμ΅λ λ€νΈμν¬ λͺ¨λΈμ μ νλλ₯Ό μΈ‘μ ν©λλ€. datacfgλ λ°μ΄ν° κ΅¬μ± νμΌμ κ²½λ‘λ₯Ό, filenameμ νμ΅λ λ€νΈμν¬ λͺ¨λΈ νμΌμ κ²½λ‘λ₯Ό, weightfileμ νμ΅λ λ€νΈμν¬ λͺ¨λΈ κ°μ€μΉ νμΌμ κ²½λ‘λ₯Ό λνλ
λλ€. μ΄ ν¨μμμλ ν΄λΉ κ²½λ‘μ μλ λͺ¨λΈκ³Ό κ°μ€μΉλ₯Ό λΆλ¬μμ μ¬μ©ν©λλ€.
ν¨μλ κ²μ¦μ νμν λ°μ΄ν° κ΅¬μ± μ 보λ₯Ό μ½μ΄λ€μ
λλ€. μ΄ μ 보λ optionsλΌλ 리μ€νΈμ μ μ₯λλ©°, μ¬κΈ°μλ λΌλ²¨ 리μ€νΈ νμΌ κ²½λ‘, κ²μ¦ λ°μ΄ν° 리μ€νΈ νμΌ κ²½λ‘, ν΄λμ€ μ, topk λ±μ΄ μ μ₯λ©λλ€.
κ²μ¦ λ°μ΄ν°λ μ¬λ¬ κ°μ λ―Έλ λ°°μΉλ‘ λλμ΄μ κ²μ¦μ μνν©λλ€. splitsλ λ―Έλ λ°°μΉμ μλ₯Ό λνλ΄λ©°, plist 리μ€νΈμμ κ²μ¦ λ°μ΄ν°μ κ²½λ‘λ₯Ό κ°μ Έμμ paths λ°°μ΄μ μ μ₯ν©λλ€. κ° λ―Έλ λ°°μΉλ³λ‘ μ νλλ₯Ό μΈ‘μ νκ³ νκ· μ νλμ νκ· topkλ₯Ό κ³μ°ν©λλ€.
κ²μ¦ λ°μ΄ν°λ₯Ό λΆλ¬λ€μΌ λλ load_data_in_thread ν¨μλ₯Ό μ¬μ©ν©λλ€. μ΄ ν¨μλ pthread λΌμ΄λΈλ¬λ¦¬λ₯Ό μ΄μ©ν΄μ λ©ν°μ€λ λ©μΌλ‘ λ°μ΄ν°λ₯Ό λΆλ¬μ΅λλ€. κ²μ¦ λ°μ΄ν°λ₯Ό λΆλ¬λ€μΈ νμλ free_data ν¨μλ₯Ό μ¬μ©ν΄μ λ©λͺ¨λ¦¬λ₯Ό ν΄μ ν©λλ€.
validate_classifier_10
void validate_classifier_10(char *datacfg, char *filename, char *weightfile)
{
int i, j;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *valid_list = option_find_str(options, "valid", "data/train.list");
int classes = option_find_int(options, "classes", 2);
int topk = option_find_int(options, "top", 1);
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
float avg_acc = 0;
float avg_topk = 0;
int *indexes = calloc(topk, sizeof(int));
for(i = 0; i < m; ++i){
int class = -1;
char *path = paths[i];
for(j = 0; j < classes; ++j){
if(strstr(path, labels[j])){
class = j;
break;
}
}
int w = net->w;
int h = net->h;
int shift = 32;
image im = load_image_color(paths[i], w+shift, h+shift);
image images[10];
images[0] = crop_image(im, -shift, -shift, w, h);
images[1] = crop_image(im, shift, -shift, w, h);
images[2] = crop_image(im, 0, 0, w, h);
images[3] = crop_image(im, -shift, shift, w, h);
images[4] = crop_image(im, shift, shift, w, h);
flip_image(im);
images[5] = crop_image(im, -shift, -shift, w, h);
images[6] = crop_image(im, shift, -shift, w, h);
images[7] = crop_image(im, 0, 0, w, h);
images[8] = crop_image(im, -shift, shift, w, h);
images[9] = crop_image(im, shift, shift, w, h);
float *pred = calloc(classes, sizeof(float));
for(j = 0; j < 10; ++j){
float *p = network_predict(net, images[j].data);
if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1, 1);
axpy_cpu(classes, 1, p, 1, pred, 1);
free_image(images[j]);
}
free_image(im);
top_k(pred, classes, topk, indexes);
free(pred);
if(indexes[0] == class) avg_acc += 1;
for(j = 0; j < topk; ++j){
if(indexes[j] == class) avg_topk += 1;
}
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
}
}
ν¨μ μ΄λ¦: validate_classifier_10
μ
λ ₯:
datacfg (λ¬Έμμ΄): λ°μ΄ν° κ΅¬μ± νμΌ κ²½λ‘
filename (λ¬Έμμ΄): λ€νΈμν¬ νμΌ κ²½λ‘
weightfile (λ¬Έμμ΄): κ°μ€μΉ νμΌ κ²½λ‘
λμ:
μ£Όμ΄μ§ λ€νΈμν¬μ κ°μ€μΉλ₯Ό μ¬μ©νμ¬ λ°μ΄ν°μ
μ μ νλλ₯Ό κ²μ¦νλ ν¨μμ
λλ€.
κ²μ¦μ μ¬μ©ν λ°μ΄ν°μ
μ datacfg νμΌμμ μ§μ νλ©°, λΌλ²¨ λͺ©λ‘, ν΄λμ€ μ, top-k κ°μ μ€μ ν μ μμ΅λλ€.
μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ¬λ¬ λ°©ν₯μΌλ‘ μλ₯΄κ³ λ€μ§μ΄μ μμΈ‘μ μννκ³ , top-k μ νλμ top-1 μ νλλ₯Ό κ³μ°νμ¬ μΆλ ₯ν©λλ€.
μ€λͺ
:
char **labels: λΌλ²¨ λͺ©λ‘μ μ μ₯νλ λ¬Έμμ΄ λ°°μ΄
list *plist: μ΄λ―Έμ§ νμΌ κ²½λ‘ λͺ©λ‘μ μ μ₯νλ λ§ν¬λ 리μ€νΈ
char **paths: μ΄λ―Έμ§ νμΌ κ²½λ‘λ₯Ό μ μ₯νλ λ¬Έμμ΄ λ°°μ΄
int m: κ²μ¦μ μ¬μ©ν μ΄λ―Έμ§ νμΌμ κ°μ
int classes: ν΄λμ€ μ
int *indexes: top-k μμΈ‘ κ²°κ³Όμ μΈλ±μ€λ₯Ό μ μ₯νλ μ μν λ°°μ΄
image im: μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ μ₯νλ ꡬ쑰체
image images[10]: μ
λ ₯ μ΄λ―Έμ§λ₯Ό μλ₯Έ μ΄λ―Έμ§λ€μ μ μ₯νλ ꡬ쑰체 λ°°μ΄
float *pred: μμΈ‘ κ²°κ³Όλ₯Ό μ μ₯νλ μ€μν λ°°μ΄
float *p: λ€νΈμν¬ μμΈ‘ κ²°κ³Όλ₯Ό μ μ₯νλ μ€μν λ°°μ΄
ν¨μλ κ° μ΄λ―Έμ§μ λν΄ λ€μμ μνν©λλ€:
μ΄λ―Έμ§ νμΌμμ μ
λ ₯ μ΄λ―Έμ§λ₯Ό λ‘λνκ³ , μ¬λ¬ λ°©ν₯μΌλ‘ μλ₯Έ μ΄λ―Έμ§λ₯Ό μμ±ν©λλ€.
μμ±λ μ΄λ―Έμ§λ€μ λν΄ μμΈ‘μ μννκ³ , μμΈ‘ κ²°κ³Όλ₯Ό λμ ν©λλ€.
μμΈ‘ κ²°κ³Όμμ top-k μμΈ‘ κ²°κ³Όλ₯Ό κ³μ°νκ³ , top-k μ νλμ top-1 μ νλλ₯Ό κ³μ°ν©λλ€.
λ©λͺ¨λ¦¬λ₯Ό ν΄μ ν©λλ€.
ν¨μλ κ²μ¦ κ²°κ³Όλ₯Ό μΆλ ₯ν©λλ€.
validate_classifier_full
void validate_classifier_full(char *datacfg, char *filename, char *weightfile)
{
int i, j;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *valid_list = option_find_str(options, "valid", "data/train.list");
int classes = option_find_int(options, "classes", 2);
int topk = option_find_int(options, "top", 1);
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
float avg_acc = 0;
float avg_topk = 0;
int *indexes = calloc(topk, sizeof(int));
int size = net->w;
for(i = 0; i < m; ++i){
int class = -1;
char *path = paths[i];
for(j = 0; j < classes; ++j){
if(strstr(path, labels[j])){
class = j;
break;
}
}
image im = load_image_color(paths[i], 0, 0);
image resized = resize_min(im, size);
resize_network(net, resized.w, resized.h);
//show_image(im, "orig");
//show_image(crop, "cropped");
//cvWaitKey(0);
float *pred = network_predict(net, resized.data);
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);
free_image(im);
free_image(resized);
top_k(pred, classes, topk, indexes);
if(indexes[0] == class) avg_acc += 1;
for(j = 0; j < topk; ++j){
if(indexes[j] == class) avg_topk += 1;
}
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
}
}
ν¨μ μ΄λ¦: validate_classifier_full
μ
λ ₯:
datacfg: char ν¬μΈν°, λ°μ΄ν° κ΅¬μ± νμΌ κ²½λ‘
filename: char ν¬μΈν°, λ€νΈμν¬ κ΅¬μ‘° νμΌ κ²½λ‘
weightfile: char ν¬μΈν°, λ€νΈμν¬ κ°μ€μΉ νμΌ κ²½λ‘
λμ:
μ§μ λ κ²½λ‘μμ λ€νΈμν¬λ₯Ό λ‘λνκ³ , μ΄λ₯Ό μ΄μ©νμ¬ μ
λ ₯ μ΄λ―Έμ§λ€μ λΆλ₯ν¨
λΆλ₯ κ²°κ³Όμ μ νλλ₯Ό μΆλ ₯ν¨
μ€λͺ
:
μ§μ λ κ²½λ‘μμ λ€νΈμν¬ κ΅¬μ‘°μ κ°μ€μΉλ₯Ό λ‘λνμ¬ λ€νΈμν¬λ₯Ό μμ±ν¨
λ°°μΉ ν¬κΈ°λ₯Ό 1λ‘ μ€μ ν¨
μλ κ°μ νμ¬ μκ°μΌλ‘ μ€μ νμ¬ λμ μμ±κΈ°λ₯Ό μ΄κΈ°νν¨
λ°μ΄ν° κ΅¬μ± νμΌμμ ν΄λμ€ μ, λΌλ²¨ νμΌ κ²½λ‘, κ²μ¦ λ°μ΄ν° νμΌ κ²½λ‘, top-k κ°μ μ½μ΄λ€μ
λΌλ²¨ νμΌμμ ν΄λμ€ μ΄λ¦μ κ°μ Έμ΄
κ²μ¦ λ°μ΄ν° νμΌμμ μ΄λ―Έμ§ κ²½λ‘ λ¦¬μ€νΈλ₯Ό κ°μ Έμ΄
μ΄λ―Έμ§ κ²½λ‘ λ¦¬μ€νΈλ₯Ό λ°°μ΄λ‘ λ³ννκ³ , λ°°μ΄μ ν¬κΈ°λ₯Ό λ³μ mμ μ μ₯ν¨
top-k κ°λ§νΌμ μΈλ±μ€λ₯Ό μ μ₯ν λ°°μ΄μ ν λΉν¨
κ° μ΄λ―Έμ§μ λν΄ λ€μμ μνν¨:
μ΄λ―Έμ§ νμΌμ λ‘λνκ³ , μ§μ λ ν¬κΈ°λ‘ ν¬κΈ°λ₯Ό μ‘°μ ν¨
μ‘°μ λ μ΄λ―Έμ§λ₯Ό μ΄μ©νμ¬ λ€νΈμν¬λ₯Ό ν΅κ³Όμν€κ³ , κ²°κ³Όλ₯Ό μμΈ‘ν¨
μμΈ‘ κ²°κ³Όλ₯Ό μ΄μ©νμ¬ λΆλ₯ μ νλλ₯Ό κ³μ°ν¨
κ³μ°λ μ νλλ₯Ό μΆλ ₯ν¨
validate_classifier_single
void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
{
int i, j;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *leaf_list = option_find_str(options, "leaves", 0);
if(leaf_list) change_leaves(net->hierarchy, leaf_list);
char *valid_list = option_find_str(options, "valid", "data/train.list");
int classes = option_find_int(options, "classes", 2);
int topk = option_find_int(options, "top", 1);
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
float avg_acc = 0;
float avg_topk = 0;
int *indexes = calloc(topk, sizeof(int));
for(i = 0; i < m; ++i){
int class = -1;
char *path = paths[i];
for(j = 0; j < classes; ++j){
if(strstr(path, labels[j])){
class = j;
break;
}
}
image im = load_image_color(paths[i], 0, 0);
image crop = center_crop_image(im, net->w, net->h);
//grayscale_image_3c(crop);
//show_image(im, "orig");
//show_image(crop, "cropped");
//cvWaitKey(0);
float *pred = network_predict(net, crop.data);
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);
free_image(im);
free_image(crop);
top_k(pred, classes, topk, indexes);
if(indexes[0] == class) avg_acc += 1;
for(j = 0; j < topk; ++j){
if(indexes[j] == class) avg_topk += 1;
}
printf("%s, %d, %f, %f, \n", paths[i], class, pred[0], pred[1]);
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
}
}
ν¨μ μ΄λ¦: validate_classifier_single
μ
λ ₯:
char *datacfg: λ°μ΄ν° μ€μ νμΌ κ²½λ‘
char *filename: λ€νΈμν¬ κ΅¬μ‘° μ€μ νμΌ κ²½λ‘
char *weightfile: λ€νΈμν¬ κ°μ€μΉ νμΌ κ²½λ‘
λμ:
μ§μ λ κ²½λ‘μμ μ΄λ―Έμ§λ₯Ό λ‘λνμ¬ λ€νΈμν¬λ₯Ό ν΅ν΄ λΆλ₯νκ³ μ νλλ₯Ό νκ°ν©λλ€.
λΆλ₯ κ²°κ³Όμ κ° μ΄λ―Έμ§μ μ νλ(top 1, top k)λ₯Ό μΆλ ₯ν©λλ€.
μ€λͺ
:
μ§μ λ λ°μ΄ν° μ€μ νμΌ(datacfg)μ μ½μ΄λ€μ¬ μ΅μ
λ€μ κ°μ Έμ΅λλ€.
λ€νΈμν¬ κ΅¬μ‘° μ€μ νμΌ(filename)κ³Ό κ°μ€μΉ νμΌ(weightfile)μ μ¬μ©νμ¬ λ€νΈμν¬λ₯Ό λ‘λν©λλ€.
ν λ²μ νλμ μ΄λ―Έμ§(batch_size=1)λ₯Ό μ²λ¦¬νλλ‘ λ°°μΉ ν¬κΈ°λ₯Ό μ€μ ν©λλ€.
μ§μ λ κ²½λ‘μμ κ²μ¦ λ°μ΄ν°μ
리μ€νΈλ₯Ό μ½μ΄λ€μ¬ κ° μ΄λ―Έμ§ κ²½λ‘λ₯Ό κ°μ Έμ΅λλ€.
κ° μ΄λ―Έμ§λ₯Ό λ‘λνμ¬ λ€νΈμν¬λ₯Ό ν΅ν΄ λΆλ₯νκ³ μ νλλ₯Ό νκ°ν©λλ€.
λΆλ₯ κ²°κ³Όμ κ° μ΄λ―Έμ§μ μ νλ(top 1, top k)λ₯Ό μΆλ ₯ν©λλ€.
κ° μ΄λ―Έμ§μμ μΆλ‘ λ κ²°κ³Ό(pred)μ μ€μ λ μ΄λΈ(class)μ ν¨κ» μΆλ ₯ν©λλ€.
validate_classifier_multi
void validate_classifier_multi(char *datacfg, char *cfg, char *weights)
{
int i, j;
network *net = load_network(cfg, weights, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "labels", "data/labels.list");
char *valid_list = option_find_str(options, "valid", "data/train.list");
int classes = option_find_int(options, "classes", 2);
int topk = option_find_int(options, "top", 1);
char **labels = get_labels(label_list);
list *plist = get_paths(valid_list);
//int scales[] = {224, 288, 320, 352, 384};
int scales[] = {224, 256, 288, 320};
int nscales = sizeof(scales)/sizeof(scales[0]);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
float avg_acc = 0;
float avg_topk = 0;
int *indexes = calloc(topk, sizeof(int));
for(i = 0; i < m; ++i){
int class = -1;
char *path = paths[i];
for(j = 0; j < classes; ++j){
if(strstr(path, labels[j])){
class = j;
break;
}
}
float *pred = calloc(classes, sizeof(float));
image im = load_image_color(paths[i], 0, 0);
for(j = 0; j < nscales; ++j){
image r = resize_max(im, scales[j]);
resize_network(net, r.w, r.h);
float *p = network_predict(net, r.data);
if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1 , 1);
axpy_cpu(classes, 1, p, 1, pred, 1);
flip_image(r);
p = network_predict(net, r.data);
axpy_cpu(classes, 1, p, 1, pred, 1);
if(r.data != im.data) free_image(r);
}
free_image(im);
top_k(pred, classes, topk, indexes);
free(pred);
if(indexes[0] == class) avg_acc += 1;
for(j = 0; j < topk; ++j){
if(indexes[j] == class) avg_topk += 1;
}
printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
}
}
ν¨μ μ΄λ¦: validate_classifier_multi
μ
λ ₯:
datacfg: char ν¬μΈν°, λ°μ΄ν° μ€μ νμΌ κ²½λ‘
cfg: char ν¬μΈν°, λͺ¨λΈ μ€μ νμΌ κ²½λ‘
weights: char ν¬μΈν°, λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘
λμ:
μ£Όμ΄μ§ λ°μ΄ν° μ€μ νμΌ, λͺ¨λΈ μ€μ νμΌ, λͺ¨λΈ κ°μ€μΉ νμΌμ μ΄μ©νμ¬ λͺ¨λΈμ λ‘λνκ³ , κ²μ¦ λ°μ΄ν°μ
μ μ΄μ©νμ¬ λͺ¨λΈμ μ νλλ₯Ό κ²μ¦νλ ν¨μμ
λλ€.
κ²μ¦ κ²°κ³ΌμΈ top-1 μ νλμ top-k μ νλλ₯Ό μΆλ ₯ν©λλ€.
μ€λͺ
:
μ΄ ν¨μλ Darknet νλ μμν¬μμ μ 곡νλ ν¨μλ‘, μ£Όμ΄μ§ λ°μ΄ν° μ€μ νμΌ, λͺ¨λΈ μ€μ νμΌ, λͺ¨λΈ κ°μ€μΉ νμΌμ μ΄μ©νμ¬ λͺ¨λΈμ λ‘λν©λλ€. κ²μ¦ λ°μ΄ν°μ
μ μ΄μ©νμ¬ λͺ¨λΈμ μ νλλ₯Ό κ²μ¦νκ³ , top-1 μ νλμ top-k μ νλλ₯Ό μΆλ ₯ν©λλ€.
ν¨μκ° λ°λ μ
λ ₯μΌλ‘λ λ°μ΄ν° μ€μ νμΌ κ²½λ‘, λͺ¨λΈ μ€μ νμΌ κ²½λ‘, λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘κ° μμ΅λλ€. μ΄ ν¨μλ λ°μ΄ν° μ€μ νμΌμμ λ€μκ³Ό κ°μ μ 보λ₯Ό μ½μ΄μ΅λλ€.
labels: ν΄λμ€ λ μ΄λΈ νμΌ κ²½λ‘
valid: κ²μ¦ λ°μ΄ν°μ
νμΌ κ²½λ‘
top: top-k μ νλ κ³μ°μ μ¬μ©ν k κ°
μ΄ ν¨μλ κ° μ΄λ―Έμ§μ λν΄ λ€μκ³Ό κ°μ λμμ μνν©λλ€.
ν΄λμ€ λ μ΄λΈ νμΌμμ ν΄λμ€ λ μ΄λΈμ μ½μ΄μ΅λλ€.
κ²μ¦ λ°μ΄ν°μ
μμ μ΄λ―Έμ§ κ²½λ‘λ₯Ό μ½μ΄μ΅λλ€.
μ΄λ―Έμ§λ₯Ό λ‘λνκ³ , λ€μν ν¬κΈ°λ‘ resizeν©λλ€.
resizeλ μ΄λ―Έμ§λ₯Ό μ΄μ©νμ¬ λͺ¨λΈμ μμΈ‘κ°μ ꡬν©λλ€.
μμΈ‘κ°μ μ΄μ©νμ¬ top-k μ νλλ₯Ό κ³μ°ν©λλ€.
top-1 μ νλλ₯Ό κ³μ°ν©λλ€.
λ§μ§λ§μΌλ‘, κ° μ΄λ―Έμ§μ top-1 μ νλμ top-k μ νλλ₯Ό νκ· νμ¬ μΆλ ₯ν©λλ€.
try_classifier
void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", 0);
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
int top = option_find_int(options, "top", 1);
int i = 0;
char **names = get_labels(name_list);
clock_t time;
int *indexes = calloc(top, sizeof(int));
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image orig = load_image_color(input, 0, 0);
image r = resize_min(orig, 256);
image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224);
float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742};
float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583};
float var[3];
var[0] = std[0]*std[0];
var[1] = std[1]*std[1];
var[2] = std[2]*std[2];
normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h);
float *X = im.data;
time=clock();
float *predictions = network_predict(net, X);
layer l = net->layers[layer_num];
for(i = 0; i < l.c; ++i){
if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]);
}
#ifdef GPU
cuda_pull_array(l.output_gpu, l.output, l.outputs);
#endif
for(i = 0; i < l.outputs; ++i){
printf("%f\n", l.output[i]);
}
/*
printf("\n\nWeights\n");
for(i = 0; i < l.n*l.size*l.size*l.c; ++i){
printf("%f\n", l.filters[i]);
}
printf("\n\nBiases\n");
for(i = 0; i < l.n; ++i){
printf("%f\n", l.biases[i]);
}
*/
top_predictions(net, top, indexes);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
for(i = 0; i < top; ++i){
int index = indexes[i];
printf("%s: %f\n", names[index], predictions[index]);
}
free_image(im);
if (filename) break;
}
}
ν¨μ μ΄λ¦: try_classifier
μ
λ ₯:
datacfg: char ν¬μΈν° νμ
, λ°μ΄ν° κ΅¬μ± νμΌ κ²½λ‘
cfgfile: char ν¬μΈν° νμ
, λͺ¨λΈ κ΅¬μ± νμΌ κ²½λ‘
weightfile: char ν¬μΈν° νμ
, λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘
filename: char ν¬μΈν° νμ
, μ΄λ―Έμ§ νμΌ κ²½λ‘ (μ νμ μ
λ ₯)
layer_num: int νμ
, μΆλ ₯ν λ μ΄μ΄ λ²νΈ
λμ:
μ£Όμ΄μ§ λͺ¨λΈ κ΅¬μ± νμΌκ³Ό κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λ€νΈμν¬λ₯Ό λ‘λνλ€.
μ
λ ₯ μ΄λ―Έμ§λ₯Ό λ°μλ€μΈλ€ (filenameμΌλ‘ μ§μ λ μ΄λ―Έμ§ λλ stdinμμ μ
λ ₯)
μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ μ²λ¦¬νλ€ (ν¬κΈ° μ‘°μ , μλ₯΄κΈ°, μ κ·ν)
μ μ²λ¦¬λ μ΄λ―Έμ§λ₯Ό μ
λ ₯μΌλ‘ μ¬μ©νμ¬ λ€νΈμν¬λ₯Ό μ€ννλ€.
μ§μ λ μΆλ ₯ λ μ΄μ΄μ μΆλ ₯ λ° νΉμ κ°μ€μΉμ λ°μ΄μ΄μ€ κ°μ μΆλ ₯νλ€.
κ° ν΄λμ€μ λν μμΈ‘ νλ₯ μ μΆλ ₯νλ€.
μ€λͺ
:
try_classifier ν¨μλ μ£Όμ΄μ§ λͺ¨λΈλ‘ μ΄λ―Έμ§ λΆλ₯κΈ°λ₯Ό μλνλ ν¨μμ΄λ€.
μ΄ ν¨μλ Darknet νλ μμν¬λ₯Ό μ¬μ©νμ¬ μμ±λμμΌλ©°, C μΈμ΄λ‘ μμ±λμλ€.
ν¨μμ λ§€κ° λ³μλ‘λ λ°μ΄ν° κ΅¬μ± νμΌ κ²½λ‘, λͺ¨λΈ κ΅¬μ± νμΌ κ²½λ‘, λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘, μ΄λ―Έμ§ νμΌ κ²½λ‘ (μ ν μ¬ν) λ° μΆλ ₯ λ μ΄μ΄ λ²νΈκ° μλ€.
ν¨μλ μ
λ ₯ μ΄λ―Έμ§λ₯Ό λ°μλ€μ΄κΈ° μν΄ stdinμμ μ΄λ―Έμ§ κ²½λ‘λ₯Ό μ
λ ₯νκ±°λ filenameμ μ¬μ©νμ¬ μ΄λ―Έμ§ νμΌ κ²½λ‘λ₯Ό μ§μ μ§μ ν μ μλ€.
ν¨μλ μ
λ ₯ μ΄λ―Έμ§λ₯Ό μ μ²λ¦¬νκ³ μ§μ λ μΆλ ₯ λ μ΄μ΄μ μΆλ ₯ κ°μ μΆλ ₯νλ€.
ν¨μλ λν κ° ν΄λμ€μ λν μμΈ‘ νλ₯ μ μΆλ ₯νλ€.
predict_classifier
void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", 0);
if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
if(top == 0) top = option_find_int(options, "top", 1);
int i = 0;
char **names = get_labels(name_list);
clock_t time;
int *indexes = calloc(top, sizeof(int));
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
}else{
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input, 0, 0);
image r = letterbox_image(im, net->w, net->h);
//image r = resize_min(im, 320);
//printf("%d %d\n", r.w, r.h);
//resize_network(net, r.w, r.h);
//printf("%d %d\n", r.w, r.h);
float *X = r.data;
time=clock();
float *predictions = network_predict(net, X);
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
top_k(predictions, net->outputs, top, indexes);
fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time));
for(i = 0; i < top; ++i){
int index = indexes[i];
//if(net->hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net->hierarchy->parent[index] >= 0) ? names[net->hierarchy->parent[index]] : "Root");
//else printf("%s: %f\n",names[index], predictions[index]);
printf("%5.2f%%: %s\n", predictions[index]*100, names[index]);
}
if(r.data != im.data) free_image(r);
free_image(im);
if (filename) break;
}
}
ν¨μ μ΄λ¦: predict_classifier
μ
λ ₯:
datacfg: λ°μ΄ν° μ€μ νμΌμ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°
cfgfile: λ€νΈμν¬ κ΅¬μ‘° μ€μ νμΌμ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°
weightfile: νμ΅λ κ°μ€μΉ νμΌμ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°
filename: μ΄λ―Έμ§ νμΌ κ²½λ‘λ₯Ό λνλ΄λ λ¬Έμμ΄ ν¬μΈν°, μμΌλ©΄ NULL
top: λΆλ₯ κ²°κ³Ό μ€ μμ λͺ κ°μ μμΈ‘ κ²°κ³Όλ₯Ό μΆλ ₯ν μ§λ₯Ό λνλ΄λ μ μ
λμ:
μ
λ ₯λ μ΄λ―Έμ§ νμΌμ λΆλ₯νμ¬ μμΈ‘ κ²°κ³Όλ₯Ό μΆλ ₯νλ ν¨μ
μ€λͺ
:
μ΄ ν¨μλ YOLOv3 λ€νΈμν¬λ₯Ό μ΄μ©νμ¬ μ
λ ₯λ μ΄λ―Έμ§ νμΌμ λΆλ₯νκ³ μμΈ‘ κ²°κ³Όλ₯Ό μΆλ ₯ν©λλ€. ν¨μκ° νΈμΆλ λλ μμμ μ€λͺ
ν λ€μ― κ°μ§ μ
λ ₯κ°μ λ°κ² λ©λλ€.
ν¨μμ μ£Όμ λμμ λ€μκ³Ό κ°μ΅λλ€.
μ€μ νμΌμμ λΌλ²¨ μ 보λ₯Ό μ½μ΄λ€μ
λλ€.
μ΄λ―Έμ§ νμΌμ λΆλ¬λ€μ
λλ€.
μ΄λ―Έμ§λ₯Ό YOLOv3 λͺ¨λΈμ μ
λ ₯ κ°λ₯ν ν¬κΈ°λ‘ λ³νν©λλ€.
λͺ¨λΈμ μ΄μ©νμ¬ μμΈ‘ κ²°κ³Όλ₯Ό κ³μ°ν©λλ€.
κ³μ°λ μμΈ‘ κ²°κ³Ό μ€ μμ nκ°λ₯Ό μΆλ ₯ν©λλ€.
μ ν¨μμ μ
λ ₯κ° μ€ filenameμ μ νμ μ
λλ€. μ΄ κ°μ΄ NULLμ΄ μλ κ²½μ°μλ ν΄λΉ κ²½λ‘μ μ΄λ―Έμ§ νμΌμ μ¬μ©νμ¬ μμΈ‘ κ²°κ³Όλ₯Ό μΆλ ₯ν©λλ€. filenameμ΄ NULLμΈ κ²½μ°μλ μ¬μ©μμκ² μ΄λ―Έμ§ νμΌ κ²½λ‘λ₯Ό μ
λ ₯λ°μ΅λλ€.
ν¨μμ λ°νκ°μ μμ΅λλ€.
label_classifier
void label_classifier(char *datacfg, char *filename, char *weightfile)
{
int i;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *label_list = option_find_str(options, "names", "data/labels.list");
char *test_list = option_find_str(options, "test", "data/train.list");
int classes = option_find_int(options, "classes", 2);
char **labels = get_labels(label_list);
list *plist = get_paths(test_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
for(i = 0; i < m; ++i){
image im = load_image_color(paths[i], 0, 0);
image resized = resize_min(im, net->w);
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
float *pred = network_predict(net, crop.data);
if(resized.data != im.data) free_image(resized);
free_image(im);
free_image(crop);
int ind = max_index(pred, classes);
printf("%s\n", labels[ind]);
}
}
ν¨μ μ΄λ¦: label_classifier
μ
λ ₯:
char *datacfg: λ°μ΄ν° μ€μ νμΌ κ²½λ‘
char *filename: λͺ¨λΈ μ€μ νμΌ κ²½λ‘
char *weightfile: λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘
λμ:
μ£Όμ΄μ§ λ°μ΄ν° μ€μ νμΌ, λͺ¨λΈ μ€μ νμΌ, λͺ¨λΈ κ°μ€μΉ νμΌμ μ΄μ©νμ¬ λͺ¨λΈμ λ‘λνκ³ , ν
μ€νΈ μ΄λ―Έμ§ κ²½λ‘λ₯Ό μ½μ΄λ€μ¬ μ΄λ―Έμ§λ₯Ό λ‘λν ν λͺ¨λΈμ μ΄μ©νμ¬ μ΄λ―Έμ§λ₯Ό λΆλ₯νκ³ , ν΄λΉ μ΄λ―Έμ§μ ν΄λμ€ μ΄λ¦μ μΆλ ₯νλ€.
μ€λͺ
:
label_classifier ν¨μλ μ£Όμ΄μ§ λ°μ΄ν° μ€μ νμΌ(datacfg), λͺ¨λΈ μ€μ νμΌ(filename), λͺ¨λΈ κ°μ€μΉ νμΌ(weightfile)μ μ΄μ©νμ¬ λͺ¨λΈμ λ‘λνλ€.
κ·Έλ¦¬κ³ μ€μ νμΌμμ ν΄λμ€ μ΄λ¦ λͺ©λ‘(label_list), ν
μ€νΈ μ΄λ―Έμ§ κ²½λ‘(test_list), ν΄λμ€ κ°μ(classes)λ₯Ό μ½μ΄λ€μΈλ€.
ν
μ€νΈ μ΄λ―Έμ§ κ²½λ‘μμ μ΄λ―Έμ§λ₯Ό μ½μ΄λ€μ¬ μ΄λ―Έμ§λ₯Ό λͺ¨λΈ μ
λ ₯ ν¬κΈ°μ λ§κ² 리μ¬μ΄μ¦νκ³ , μ΄λ―Έμ§ μ€μμμ λͺ¨λΈ μ
λ ₯ ν¬κΈ°λ§νΌ ν¬λ‘ν μ΄λ―Έμ§λ₯Ό λͺ¨λΈμ μ
λ ₯νμ¬ μμΈ‘ κ²°κ³Όλ₯Ό μ»λλ€.
κ·Έλ¦¬κ³ μμΈ‘ κ²°κ³Ό μ€ κ°μ₯ λμ κ°μ κ°μ§λ ν΄λμ€ μΈλ±μ€λ₯Ό ꡬνκ³ , ν΄λμ€ μ΄λ¦ λͺ©λ‘μμ ν΄λΉ μΈλ±μ€μ ν΄λΉνλ ν΄λμ€ μ΄λ¦μ μ°Ύμ μΆλ ₯νλ€.
μ΄ ν¨μλ μ΄λ―Έμ§ λΆλ₯μ μ£Όλ‘ μ¬μ©λλ©°, λ¨μΌ μ΄λ―Έμ§μ λν μμΈ‘ κ²°κ³Όλ₯Ό μΆλ ₯νλ€.
csv_classifier
void csv_classifier(char *datacfg, char *cfgfile, char *weightfile)
{
int i,j;
network *net = load_network(cfgfile, weightfile, 0);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *test_list = option_find_str(options, "test", "data/test.list");
int top = option_find_int(options, "top", 1);
list *plist = get_paths(test_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
int *indexes = calloc(top, sizeof(int));
for(i = 0; i < m; ++i){
double time = what_time_is_it_now();
char *path = paths[i];
image im = load_image_color(path, 0, 0);
image r = letterbox_image(im, net->w, net->h);
float *predictions = network_predict(net, r.data);
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
top_k(predictions, net->outputs, top, indexes);
printf("%s", path);
for(j = 0; j < top; ++j){
printf("\t%d", indexes[j]);
}
printf("\n");
free_image(im);
free_image(r);
fprintf(stderr, "%lf seconds, %d images, %d total\n", what_time_is_it_now() - time, i+1, m);
}
}
ν¨μ μ΄λ¦: csv_classifier
μ
λ ₯:
datacfg: char νμμ λ°μ΄ν° μ€μ νμΌ κ²½λ‘
cfgfile: char νμμ λ€νΈμν¬ μ€μ νμΌ κ²½λ‘
weightfile: char νμμ λ€νΈμν¬ κ°μ€μΉ νμΌ κ²½λ‘
λμ:
csv νμμ λΆλ₯ κ²°κ³Όλ₯Ό μΆλ ₯νλ ν¨μ.
μ
λ ₯λ λ°μ΄ν° μ€μ νμΌ, λ€νΈμν¬ μ€μ νμΌ, λ€νΈμν¬ κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λ€νΈμν¬λ₯Ό λ‘λνκ³ , ν
μ€νΈ λ°μ΄ν°μ κ²½λ‘λ₯Ό κ°μ Έμμ λΆλ₯λ₯Ό μνν ν, κ²°κ³Όλ₯Ό csv νμμΌλ‘ μΆλ ₯νλ€.
μ€λͺ
:
μ
λ ₯λ λ°μ΄ν° μ€μ νμΌ, λ€νΈμν¬ μ€μ νμΌ, λ€νΈμν¬ κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λ€νΈμν¬λ₯Ό λ‘λνλ€.
ν
μ€νΈ λ°μ΄ν°μ κ²½λ‘λ₯Ό κ°μ Έμμ λΆλ₯λ₯Ό μννλ€.
λΆλ₯ κ²°κ³Όλ₯Ό csv νμμΌλ‘ μΆλ ₯νλ€. μΆλ ₯λλ λ΄μ©μ κ° μ΄λ―Έμ§ νμΌμ κ²½λ‘μ μμ nκ°μ ν΄λμ€ μΈλ±μ€μ΄λ€.
μμ nκ°μ ν΄λμ€ μΈλ±μ€λ top_k() ν¨μλ₯Ό μ¬μ©νμ¬ κ΅¬νλ€.
λΆλ₯κ° μνλλ λμ κ²½κ³Ό μκ°κ³Ό μ²λ¦¬λ μ΄λ―Έμ§ μ λ±μ μ 보λ₯Ό stderrμ μΆλ ₯νλ€.
test_classifier
void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer)
{
int curr = 0;
network *net = load_network(cfgfile, weightfile, 0);
srand(time(0));
list *options = read_data_cfg(datacfg);
char *test_list = option_find_str(options, "test", "data/test.list");
int classes = option_find_int(options, "classes", 2);
list *plist = get_paths(test_list);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
clock_t time;
data val, buffer;
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.classes = classes;
args.n = net->batch;
args.m = 0;
args.labels = 0;
args.d = &buffer;
args.type = OLD_CLASSIFICATION_DATA;
pthread_t load_thread = load_data_in_thread(args);
for(curr = net->batch; curr < m; curr += net->batch){
time=clock();
pthread_join(load_thread, 0);
val = buffer;
if(curr < m){
args.paths = paths + curr;
if (curr + net->batch > m) args.n = m - curr;
load_thread = load_data_in_thread(args);
}
fprintf(stderr, "Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
time=clock();
matrix pred = network_predict_data(net, val);
int i, j;
if (target_layer >= 0){
//layer l = net->layers[target_layer];
}
for(i = 0; i < pred.rows; ++i){
printf("%s", paths[curr-net->batch+i]);
for(j = 0; j < pred.cols; ++j){
printf("\t%g", pred.vals[i][j]);
}
printf("\n");
}
free_matrix(pred);
fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr);
free_data(val);
}
}
ν¨μ μ΄λ¦: test_classifier
μ
λ ₯:
datacfg: char ν¬μΈν°. λ°μ΄ν° κ΅¬μ± νμΌ(data configuration file) κ²½λ‘λ₯Ό μ§μ νλ λ¬Έμμ΄.
cfgfile: char ν¬μΈν°. λͺ¨λΈ κ΅¬μ± νμΌ(configuration file) κ²½λ‘λ₯Ό μ§μ νλ λ¬Έμμ΄.
weightfile: char ν¬μΈν°. λͺ¨λΈ κ°μ€μΉ(weight) νμΌ κ²½λ‘λ₯Ό μ§μ νλ λ¬Έμμ΄.
target_layer: int νμ
. νΉμ λ μ΄μ΄(layer)μ μΆλ ₯κ°μ μΆλ ₯ν λ ν΄λΉ λ μ΄μ΄μ μΈλ±μ€λ₯Ό μ§μ νλ μ μ.
λμ:
μ£Όμ΄μ§ λͺ¨λΈ νμΌκ³Ό κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λͺ¨λΈμ λ‘λνκ³ , μ§μ λ λ°μ΄ν° κ΅¬μ± νμΌμ μ¬μ©νμ¬ ν
μ€νΈ μ΄λ―Έμ§ κ²½λ‘λ₯Ό κ°μ Έμ¨ ν, μ΄λ₯Ό μ΄μ©νμ¬ λͺ¨λΈμ ν
μ€νΈνλ€.
λ°°μΉ(batch) λ¨μλ‘ μ΄λ―Έμ§λ₯Ό λΆλ¬μ λͺ¨λΈμ ν΅ν΄ μμΈ‘νκ³ , μμΈ‘κ°μ μΆλ ₯νλ€. νΉμ λ μ΄μ΄μ μΆλ ₯κ°μ μΆλ ₯ν μλ μλ€.
μ€λͺ
:
load_network: μ§μ λ λͺ¨λΈ νμΌκ³Ό κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λ€νΈμν¬(network)λ₯Ό λ‘λνλ€.
read_data_cfg: λ°μ΄ν° κ΅¬μ± νμΌμμ μ΅μ
μ μ½μ΄λ€μΈλ€.
option_find_str: μ΅μ
μ€ λ¬Έμμ΄ κ°μ μ°Ύλλ€.
option_find_int: μ΅μ
μ€ μ μ κ°μ μ°Ύλλ€.
get_paths: μ΄λ―Έμ§ κ²½λ‘ λ¦¬μ€νΈλ₯Ό κ°μ Έμ¨λ€.
load_data_in_thread: μ΄λ―Έμ§ λ°μ΄ν°λ₯Ό λ°°μΉ λ¨μλ‘ λ‘λνλ€.
network_predict_data: λ‘λλ μ΄λ―Έμ§ λ°μ΄ν°λ₯Ό μ΄μ©νμ¬ λͺ¨λΈμ μμΈ‘νκ³ , μμΈ‘κ°μ λ°ννλ€.
free_data: data ꡬ쑰체μμ ν λΉλ λ©λͺ¨λ¦¬λ₯Ό ν΄μ νλ€.
file_output_classifier
void file_output_classifier(char *datacfg, char *filename, char *weightfile, char *listfile)
{
int i,j;
network *net = load_network(filename, weightfile, 0);
set_batch_network(net, 1);
srand(time(0));
list *options = read_data_cfg(datacfg);
//char *label_list = option_find_str(options, "names", "data/labels.list");
int classes = option_find_int(options, "classes", 2);
list *plist = get_paths(listfile);
char **paths = (char **)list_to_array(plist);
int m = plist->size;
free_list(plist);
for(i = 0; i < m; ++i){
image im = load_image_color(paths[i], 0, 0);
image resized = resize_min(im, net->w);
image crop = crop_image(resized, (resized.w - net->w)/2, (resized.h - net->h)/2, net->w, net->h);
float *pred = network_predict(net, crop.data);
if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 0, 1);
if(resized.data != im.data) free_image(resized);
free_image(im);
free_image(crop);
printf("%s", paths[i]);
for(j = 0; j < classes; ++j){
printf("\t%g", pred[j]);
}
printf("\n");
}
}
ν¨μ μ΄λ¦: file_output_classifier
μ
λ ₯:
char *datacfg: λ°μ΄ν° μ€μ νμΌ κ²½λ‘
char *filename: λͺ¨λΈ νμΌ κ²½λ‘
char *weightfile: λͺ¨λΈ κ°μ€μΉ νμΌ κ²½λ‘
char *listfile: μ
λ ₯ μ΄λ―Έμ§ κ²½λ‘κ° ν¬ν¨λ νμΌ κ²½λ‘
λμ:
μ΄λ―Έμ§ νμΌλ€μ΄ ν¬ν¨λ listfileμμ μ΄λ―Έμ§λ₯Ό λ‘λνκ³ , ν΄λΉ μ΄λ―Έμ§λ₯Ό λͺ¨λΈμ μ
λ ₯ ν¬κΈ°λ‘ λ³νν ν, λͺ¨λΈμ μ
λ ₯νμ¬ μμΈ‘κ°μ μΆλ ₯νλ ν¨μμ
λλ€.
μΆλ ₯μ μ΄λ―Έμ§ κ²½λ‘μ κ° ν΄λμ€λ³ μμΈ‘κ°μΌλ‘ ꡬμ±λ ν
μ€νΈ νμΌλ‘ μΆλ ₯λ©λλ€.
μ€λͺ
:
λͺ¨λΈκ³Ό κ°μ€μΉλ₯Ό λ‘λν©λλ€.
λ°μ΄ν° μ€μ νμΌμμ ν΄λμ€ μλ₯Ό μ½μ΄μ΅λλ€.
μ΄λ―Έμ§ νμΌ κ²½λ‘κ° ν¬ν¨λ listfileμμ μ΄λ―Έμ§ κ²½λ‘λ₯Ό μ½μ΄μ΅λλ€.
κ° μ΄λ―Έμ§μ λν΄ λ€μ μμ
μ μνν©λλ€.
μ΄λ―Έμ§λ₯Ό λ‘λνκ³ , λͺ¨λΈ μ
λ ₯ ν¬κΈ°λ‘ λ³νν ν λͺ¨λΈμ μ
λ ₯μΌλ‘ μ 곡ν©λλ€.
λͺ¨λΈμμ μμΈ‘κ°μ κ³μ°ν©λλ€.
κ³μ°λ μμΈ‘κ°μ ν
μ€νΈ νμΌλ‘ μΆλ ₯ν©λλ€.
threat_classifier
void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
float threat = 0;
float roll = .2;
printf("Classifier Demo\n");
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
list *options = read_data_cfg(datacfg);
srand(2222222);
void * cap = open_video_stream(filename, cam_index, 0,0,0);
int top = option_find_int(options, "top", 1);
char *name_list = option_find_str(options, "names", 0);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
if(!cap) error("Couldn't connect to webcam.\n");
//cvNamedWindow("Threat", CV_WINDOW_NORMAL);
//cvResizeWindow("Threat", 512, 512);
float fps = 0;
int i;
int count = 0;
while(1){
++count;
struct timeval tval_before, tval_after, tval_result;
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
if(!in.data) break;
image in_s = resize_image(in, net->w, net->h);
image out = in;
int x1 = out.w / 20;
int y1 = out.h / 20;
int x2 = 2*x1;
int y2 = out.h - out.h/20;
int border = .01*out.h;
int h = y2 - y1 - 2*border;
int w = x2 - x1 - 2*border;
float *predictions = network_predict(net, in_s.data);
float curr_threat = 0;
if(1){
curr_threat = predictions[0] * 0 +
predictions[1] * .6 +
predictions[2];
} else {
curr_threat = predictions[218] +
predictions[539] +
predictions[540] +
predictions[368] +
predictions[369] +
predictions[370];
}
threat = roll * curr_threat + (1-roll) * threat;
draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0);
if(threat > .97) {
draw_box_width(out, x2 + .5 * w + border,
y1 + .02*h - 2*border,
x2 + .5 * w + 6*border,
y1 + .02*h + 3*border, 3*border, 1,0,0);
}
draw_box_width(out, x2 + .5 * w + border,
y1 + .02*h - 2*border,
x2 + .5 * w + 6*border,
y1 + .02*h + 3*border, .5*border, 0,0,0);
draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0);
if(threat > .57) {
draw_box_width(out, x2 + .5 * w + border,
y1 + .42*h - 2*border,
x2 + .5 * w + 6*border,
y1 + .42*h + 3*border, 3*border, 1,1,0);
}
draw_box_width(out, x2 + .5 * w + border,
y1 + .42*h - 2*border,
x2 + .5 * w + 6*border,
y1 + .42*h + 3*border, .5*border, 0,0,0);
draw_box_width(out, x1, y1, x2, y2, border, 0,0,0);
for(i = 0; i < threat * h ; ++i){
float ratio = (float) i / h;
float r = (ratio < .5) ? (2*(ratio)) : 1;
float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5);
draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0);
}
top_predictions(net, top, indexes);
char buff[256];
sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count);
//save_image(out, buff);
printf("\033[2J");
printf("\033[1;1H");
printf("\nFPS:%.0f\n",fps);
for(i = 0; i < top; ++i){
int index = indexes[i];
printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
}
if(1){
show_image(out, "Threat", 10);
}
free_image(in_s);
free_image(in);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
fps = .9*fps + .1*curr;
}
#endif
}
ν¨μ μ΄λ¦: threat_classifier
μ
λ ₯:
datacfg: char ν¬μΈν°, data νμΌ κ²½λ‘
cfgfile: char ν¬μΈν°, λͺ¨λΈμ ꡬ쑰λ₯Ό μ μν νμΌμ κ²½λ‘
weightfile: char ν¬μΈν°, λͺ¨λΈμ κ°μ€μΉκ° μ μ₯λ νμΌμ κ²½λ‘
cam_index: int, μΉμΊ μ μΈλ±μ€
filename: char ν¬μΈν°, λΉλμ€ νμΌμ κ²½λ‘
λμ:
μ
λ ₯λ νμΌ κ²½λ‘μ μΈλ±μ€λ₯Ό ν΅ν΄ μΉμΊ λλ λΉλμ€λ₯Ό μ΄κ³ , λͺ¨λΈμ λ‘λν ν, μ
λ ₯ μ΄λ―Έμ§μμ νΉμ κ°μ²΄μ μν μμ€μ μμΈ‘νμ¬ κ·Έμ λ°λΌ λ°μ€μ μμμ κ·Έλ € μΆλ ₯νλ€.
λͺ¨λΈμ Darknetμ μ¬μ©νλ©°, OpenCV λΌμ΄λΈλ¬λ¦¬κ° νμνλ€.
μ€λͺ
:
μ£Όμ΄μ§ κ²½λ‘μμ λ°μ΄ν° νμΌ(datacfg), λͺ¨λΈ νμΌ(cfgfile), κ°μ€μΉ νμΌ(weightfile)μ λ‘λνμ¬ λͺ¨λΈ(network)μ μμ±νλ€. μ΄ λͺ¨λΈμ μ
λ ₯ μ΄λ―Έμ§μμ κ°μ²΄μ μν μμ€(threat)μ μμΈ‘νλλ° μ¬μ©λλ€.
topκ³Ό namesλ λͺ¨λΈμ μ μνλ νμΌμμ μ½μ΄μ€λ©°, topμ μμΈ‘ κ²°κ³Ό μ€ κ°μ₯ λμ μμ nκ°μ κ°μ κ°μ Έμ¨λ€.
μ
λ ₯λ λΉλμ€ νμΌ(filename) λλ μΉμΊ (cam_index)μμ νλ μμ κ°μ Έμ μ²λ¦¬νλ€. μ΄ λ, μ²λ¦¬ν λλ§λ€ νμ¬μ μν μμ€μ κΈ°μ‘΄μ μν μμ€μ μΌμ λΉμ¨(roll)μ μ μ©νμ¬ μ
λ°μ΄νΈνλ€.
μΆλ ₯λ μ΄λ―Έμ§λ μν μμ€(threat)μ λ°λΌ λ°μ€μ μμμ΄ κ·Έλ €μ Έ μμΌλ©°, OpenCV λΌμ΄λΈλ¬λ¦¬μ show_image ν¨μλ₯Ό μ¬μ©νμ¬ μ€μκ°μΌλ‘ 보μ¬μ€λ€.
μ΅μ’
μ μΌλ‘ μ²λ¦¬ν μ΄λ―Έμ§μ FPS(Frame Per Second)λ₯Ό λ°ννλ€.
gun_classifier
void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
int bad_cats[] = {218, 539, 540, 1213, 1501, 1742, 1911, 2415, 4348, 19223, 368, 369, 370, 1133, 1200, 1306, 2122, 2301, 2537, 2823, 3179, 3596, 3639, 4489, 5107, 5140, 5289, 6240, 6631, 6762, 7048, 7171, 7969, 7984, 7989, 8824, 8927, 9915, 10270, 10448, 13401, 15205, 18358, 18894, 18895, 19249, 19697};
printf("Classifier Demo\n");
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
list *options = read_data_cfg(datacfg);
srand(2222222);
void * cap = open_video_stream(filename, cam_index, 0,0,0);
int top = option_find_int(options, "top", 1);
char *name_list = option_find_str(options, "names", 0);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
if(!cap) error("Couldn't connect to webcam.\n");
float fps = 0;
int i;
while(1){
struct timeval tval_before, tval_after, tval_result;
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
image in_s = resize_image(in, net->w, net->h);
float *predictions = network_predict(net, in_s.data);
top_predictions(net, top, indexes);
printf("\033[2J");
printf("\033[1;1H");
int threat = 0;
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){
int index = bad_cats[i];
if(predictions[index] > .01){
printf("Threat Detected!\n");
threat = 1;
break;
}
}
if(!threat) printf("Scanning...\n");
for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){
int index = bad_cats[i];
if(predictions[index] > .01){
printf("%s\n", names[index]);
}
}
show_image(in, "Threat Detection", 10);
free_image(in_s);
free_image(in);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
fps = .9*fps + .1*curr;
}
#endif
}
ν¨μ μ΄λ¦: gun_classifier
μ
λ ₯:
datacfg: λ¬Έμμ΄ ν¬μΈν°. λ°μ΄ν° κ΅¬μ± νμΌ κ²½λ‘.
cfgfile: λ¬Έμμ΄ ν¬μΈν°. λ€νΈμν¬ κ΅¬μ± νμΌ κ²½λ‘.
weightfile: λ¬Έμμ΄ ν¬μΈν°. λ€νΈμν¬ κ°μ€μΉ νμΌ κ²½λ‘.
cam_index: μ μ. μΉμΊ μΈλ±μ€.
filename: λ¬Έμμ΄ ν¬μΈν°. λΉλμ€ νμΌ κ²½λ‘.
λμ:
μ§μ λ λ€νΈμν¬ κ΅¬μ± νμΌκ³Ό κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λ€νΈμν¬λ₯Ό λ‘λν©λλ€.
λ€νΈμν¬μ μ
λ ₯ ν¬κΈ°λ₯Ό μ€μ ν©λλ€.
λ°μ΄ν° κ΅¬μ± νμΌμμ μ΅μ
μ μ½μ΄μ΅λλ€.
μΉμΊ λλ λΉλμ€ νμΌμμ μ΄λ―Έμ§λ₯Ό μ»μ΄μ λ€νΈμν¬λ₯Ό ν΅ν΄ μμΈ‘ν©λλ€.
μ§μ λ μκ³κ° μ΄μμΈ ν΄λμ€ μΈλ±μ€λ₯Ό μΆλ ₯ν©λλ€.
μμΈ‘λ μ΄λ―Έμ§μ μμΈ‘λ ν΄λμ€ μ΄λ¦μ μΆλ ₯νκ³ , μνμΌλ‘ κ°μ£Όλλ ν΄λμ€κ° μλ κ²½μ° "Threat Detected!"μ μΆλ ₯ν©λλ€.
μ΄λ―Έμ§λ₯Ό νμνκ³ , FPS(μ΄λΉ νλ μ μ)λ₯Ό κ³μ°ν©λλ€.
μ€λͺ
:
μ΄ ν¨μλ μ
λ ₯λ λ°μ΄ν° κ΅¬μ± νμΌ, λ€νΈμν¬ κ΅¬μ± νμΌ, κ°μ€μΉ νμΌμ μ¬μ©νμ¬ μ΄λ―Έμ§λ λΉλμ€μμ 촬μν μμ λ°μ΄ν°λ₯Ό λΆμνκ³ , μνμΌλ‘ κ°μ£Όλλ ν΄λμ€κ° μλμ§ κ°μ§νλ κΈ°λ₯μ ν©λλ€.
μ΄ ν¨μλ OpenCV λΌμ΄λΈλ¬λ¦¬λ₯Ό μ¬μ©ν©λλ€. ν¨μλ μΉμΊ λλ λΉλμ€ νμΌμμ μ΄λ―Έμ§λ₯Ό μ»μ΄μ λΆμμ μννλ©°, λΆμ κ²°κ³Όλ₯Ό μ½μμ μΆλ ₯νκ³ , FPSλ₯Ό κ³μ°νμ¬ μ΄λ―Έμ§λ₯Ό μ€μκ°μΌλ‘ νμν©λλ€.
λΆμ μ "bad_cats" λ°°μ΄μ μ§μ λ ν΄λμ€ μ€, μμΈ‘λ νλ₯ κ°μ΄ 0.01 μ΄μμΈ ν΄λμ€κ° μλ κ²½μ° "Threat Detected!"μ μΆλ ₯νκ³ , μνμΌλ‘ κ°μ£Όλλ ν΄λμ€μ μ΄λ¦μ μΆλ ₯ν©λλ€.
demo_classifier
void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename)
{
#ifdef OPENCV
char *base = basecfg(cfgfile);
image **alphabet = load_alphabet();
printf("Classifier Demo\n");
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
list *options = read_data_cfg(datacfg);
srand(2222222);
int w = 1280;
int h = 720;
void * cap = open_video_stream(filename, cam_index, w, h, 0);
int top = option_find_int(options, "top", 1);
char *label_list = option_find_str(options, "labels", 0);
char *name_list = option_find_str(options, "names", label_list);
char **names = get_labels(name_list);
int *indexes = calloc(top, sizeof(int));
if(!cap) error("Couldn't connect to webcam.\n");
float fps = 0;
int i;
while(1){
struct timeval tval_before, tval_after, tval_result;
gettimeofday(&tval_before, NULL);
image in = get_image_from_stream(cap);
//image in_s = resize_image(in, net->w, net->h);
image in_s = letterbox_image(in, net->w, net->h);
float *predictions = network_predict(net, in_s.data);
if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
top_predictions(net, top, indexes);
printf("\033[2J");
printf("\033[1;1H");
printf("\nFPS:%.0f\n",fps);
int lh = in.h*.03;
int toph = 3*lh;
float rgb[3] = {1,1,1};
for(i = 0; i < top; ++i){
printf("%d\n", toph);
int index = indexes[i];
printf("%.1f%%: %s\n", predictions[index]*100, names[index]);
char buff[1024];
sprintf(buff, "%3.1f%%: %s\n", predictions[index]*100, names[index]);
image label = get_label(alphabet, buff, lh);
draw_label(in, toph, lh, label, rgb);
toph += 2*lh;
free_image(label);
}
show_image(in, base, 10);
free_image(in_s);
free_image(in);
gettimeofday(&tval_after, NULL);
timersub(&tval_after, &tval_before, &tval_result);
float curr = 1000000.f/((long int)tval_result.tv_usec);
fps = .9*fps + .1*curr;
}
#endif
}
ν¨μ μ΄λ¦: demo_classifier
μ
λ ₯:
datacfg: λ¬Έμμ΄ ν¬μΈν°, λ°μ΄ν° νμΌ κ²½λ‘
cfgfile: λ¬Έμμ΄ ν¬μΈν°, λ€νΈμν¬ κ΅¬μ± νμΌ κ²½λ‘
weightfile: λ¬Έμμ΄ ν¬μΈν°, νμ΅λ κ°μ€μΉ νμΌ κ²½λ‘
cam_index: μ μ, μΉμΊ μΈλ±μ€
filename: λ¬Έμμ΄ ν¬μΈν°, λμμ νμΌ κ²½λ‘
λμ:
μ£Όμ΄μ§ λ°μ΄ν° νμΌ, λ€νΈμν¬ κ΅¬μ± νμΌ, νμ΅λ κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λΆλ₯κΈ° λ€νΈμν¬λ₯Ό λ‘λνκ³ , μΉμΊ λλ λμμμμ νλ μμ κ°μ Έμ μ
λ ₯ μ΄λ―Έμ§λ‘ λ³νν©λλ€.
κ·Έλ° λ€μ, λΆλ₯κΈ° λ€νΈμν¬λ₯Ό μ¬μ©νμ¬ μ
λ ₯ μ΄λ―Έμ§μμ ν΄λμ€ μμΈ‘μ μννκ³ , κ°μ₯ λμ μμΈ‘ μ μλ₯Ό κ°μ§ μμ ν΄λμ€λ₯Ό μΈμνκ³ νλ©΄μ νμν©λλ€.
μ€λͺ
:
μ΄ ν¨μλ μμ λ°μ΄ν°μ λν λΆλ₯κΈ° λͺ¨λΈμ μ±λ₯μ μκ°μ μΌλ‘ νκ°νκΈ° μν΄ μ¬μ©λ©λλ€.
μ£Όμ΄μ§ λ°μ΄ν° νμΌ, λ€νΈμν¬ κ΅¬μ± νμΌ λ° νμ΅λ κ°μ€μΉ νμΌμ μ¬μ©νμ¬ λΆλ₯κΈ° λ€νΈμν¬λ₯Ό λ‘λνκ³ , μΉμΊ λλ λμμ νμΌμμ νλ μμ κ°μ Έμ μ
λ ₯ μ΄λ―Έμ§λ‘ λ³νν©λλ€.
κ·Έλ° λ€μ, λΆλ₯κΈ° λ€νΈμν¬λ₯Ό μ¬μ©νμ¬ μ
λ ₯ μ΄λ―Έμ§μμ ν΄λμ€ μμΈ‘μ μννκ³ , κ°μ₯ λμ μμΈ‘ μ μλ₯Ό κ°μ§ μμ ν΄λμ€λ₯Ό μΈμνκ³ νλ©΄μ νμν©λλ€. μ΄ ν¨μλ OpenCV λΌμ΄λΈλ¬λ¦¬λ₯Ό μ¬μ©ν©λλ€.
run_classifier
void run_classifier(int argc, char **argv)
{
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
int ngpus;
int *gpus = read_intlist(gpu_list, &ngpus, gpu_index);
int cam_index = find_int_arg(argc, argv, "-c", 0);
int top = find_int_arg(argc, argv, "-t", 0);
int clear = find_arg(argc, argv, "-clear");
char *data = argv[3];
char *cfg = argv[4];
char *weights = (argc > 5) ? argv[5] : 0;
char *filename = (argc > 6) ? argv[6]: 0;
char *layer_s = (argc > 7) ? argv[7]: 0;
int layer = layer_s ? atoi(layer_s) : -1;
if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top);
else if(0==strcmp(argv[2], "fout")) file_output_classifier(data, cfg, weights, filename);
else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s));
else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename);
else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer);
else if(0==strcmp(argv[2], "csv")) csv_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights);
else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
else if(0==strcmp(argv[2], "validcrop")) validate_classifier_crop(data, cfg, weights);
else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
}
ν¨μ μ΄λ¦: run_classifier
μ
λ ₯:
int argc : main ν¨μμμ μ λ¬λ λͺ
λ Ήν μΈμμ κ°μ
char **argv : main ν¨μμμ μ λ¬λ λͺ
λ Ήν μΈμ λ¬Έμμ΄ λ°°μ΄
λμ:
μΈμλ‘ λ°μ λͺ
λ Ήν μΈμλ₯Ό νμ±νμ¬ ν΄λΉνλ ν¨μλ₯Ό νΈμΆνλ μν μ μν
μ€λͺ
:
μ£Όμ΄μ§ λͺ
λ Ήν μΈμλ₯Ό νμ±νμ¬ ν΄λΉνλ ν¨μλ₯Ό νΈμΆ
train, test, valid λ±μ μ΅μ
μ λ°λΌ λ€λ₯Έ ν¨μλ₯Ό νΈμΆνμ¬ ν΄λΉ μμ
μ μν
λ€μν μ΅μ
μ λ°λΌ λ€μν λμμ μνν μ μμΌλ©°, μ΄λ₯Ό μν΄ λ€μν λͺ
λ Ήν μΈμλ₯Ό λ°μ
GPU μ¬μ© μ¬λΆ, μΉ΄λ©λΌ μΈλ±μ€, μΆλ ₯ νμΌλͺ
λ±μ μΈμλ‘ λ°μ μ²λ¦¬ κ°λ₯