#include "darknet.h"
#include <stdio.h>
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
train_coco
void train_coco(char *cfgfile, char *weightfile)
{
//char *train_images = "/home/pjreddie/data/voc/test/train.txt";
//char *train_images = "/home/pjreddie/data/coco/train.txt";
char *train_images = "data/coco.trainval.txt";
//char *train_images = "data/bags.train.list";
char *backup_directory = "/home/pjreddie/backup/";
srand(time(0));
char *base = basecfg(cfgfile);
printf("%s\n", base);
float avg_loss = -1;
network *net = load_network(cfgfile, weightfile, 0);
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
int imgs = net->batch*net->subdivisions;
int i = *net->seen/imgs;
data train, buffer;
layer l = net->layers[net->n - 1];
int side = l.side;
int classes = l.classes;
float jitter = l.jitter;
list *plist = get_paths(train_images);
//int N = plist->size;
char **paths = (char **)list_to_array(plist);
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.paths = paths;
args.n = imgs;
args.m = plist->size;
args.classes = classes;
args.jitter = jitter;
args.num_boxes = side;
args.d = &buffer;
args.type = REGION_DATA;
args.angle = net->angle;
args.exposure = net->exposure;
args.saturation = net->saturation;
args.hue = net->hue;
pthread_t load_thread = load_data_in_thread(args);
clock_t time;
//while(i*imgs < N*120){
while(get_current_batch(net) < net->max_batches){
i += 1;
time=clock();
pthread_join(load_thread, 0);
train = buffer;
load_thread = load_data_in_thread(args);
printf("Loaded: %lf seconds\n", sec(clock()-time));
/*
image im = float_to_image(net->w, net->h, 3, train.X.vals[113]);
image copy = copy_image(im);
draw_coco(copy, train.y.vals[113], 7, "truth");
cvWaitKey(0);
free_image(copy);
*/
time=clock();
float loss = train_network(net, train);
if (avg_loss < 0) avg_loss = loss;
avg_loss = avg_loss*.9 + loss*.1;
printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
if(i%1000==0 || (i < 1000 && i%100 == 0)){
char buff[256];
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
save_weights(net, buff);
}
if(i%100==0){
char buff[256];
sprintf(buff, "%s/%s.backup", backup_directory, base);
save_weights(net, buff);
}
free_data(train);
}
char buff[256];
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
save_weights(net, buff);
}
ํจ์ ์ด๋ฆ: train_coco
์
๋ ฅ:
cfgfile: ํ์ต์ ์ํ YOLO ๋ชจ๋ธ ๊ตฌ์ฑ ํ์ผ ๊ฒฝ๋ก (๋ฌธ์์ด)
weightfile: ํ์ต์ ์์ํ ๋ ์ฌ์ฉํ ๊ฐ์ค์น ํ์ผ ๊ฒฝ๋ก (๋ฌธ์์ด)
๋์:
COCO ๋ฐ์ดํฐ์
์ ์ฌ์ฉํ์ฌ YOLO ๋ชจ๋ธ์ ํ์ตํ๋ ํจ์์
๋๋ค.
์ฃผ์ด์ง cfgfile๊ณผ weightfile์ ์ฌ์ฉํ์ฌ YOLO ๋ชจ๋ธ์ ๋ถ๋ฌ์จ ํ, train_images์์ ์ด๋ฏธ์ง๋ฅผ ๋ก๋ํ๊ณ ํด๋น ์ด๋ฏธ์ง์ ๋ ์ด๋ธ ๋ฐ์ดํฐ๋ฅผ ์ฌ์ฉํ์ฌ ๋ชจ๋ธ์ ํ์ตํฉ๋๋ค.
ํ์ต ์ค์๋ ์ฃผ๊ธฐ์ ์ผ๋ก ๊ฐ์ค์น๋ฅผ ์ ์ฅํ๊ณ , ํ์ต ์๋, ํ๊ท ์์ค๊ฐ ๋ฑ์ ์ ๋ณด๋ฅผ ์ถ๋ ฅํฉ๋๋ค.
์ค๋ช
:
train_images: ํ์ต์ ์ฌ์ฉ๋ ์ด๋ฏธ์ง์ ๋ ์ด๋ธ ๋ฐ์ดํฐ ํ์ผ ๊ฒฝ๋ก (๋ฌธ์์ด)
backup_directory: ๊ฐ์ค์น ํ์ผ ๋ฐฑ์
์ ์ํ ๋๋ ํ ๋ฆฌ ๊ฒฝ๋ก (๋ฌธ์์ด)
base: cfgfile์์ ๋ชจ๋ธ ๊ตฌ์ฑ ํ์ผ ์ด๋ฆ (๋ฌธ์์ด)
avg_loss: ํ์ฌ๊น์ง์ ํ๊ท ์์ค๊ฐ (์ค์)
net: YOLO ๋ชจ๋ธ (๋คํธ์ํฌ)
imgs: ๋ฐฐ์น ํฌ๊ธฐ (์ ์)
i: ํ์ฌ๊น์ง ํ์ตํ ๋ฐฐ์น ์ (์ ์)
train: ํ์ต์ ์ฌ์ฉ๋ ๋ฐ์ดํฐ (๋ฐ์ดํฐ ๊ตฌ์กฐ์ฒด)
buffer: ๋ฐ์ดํฐ๋ฅผ ๋ถ๋ฌ์ฌ ๋ ์ฌ์ฉ๋ ๋ฒํผ (๋ฐ์ดํฐ ๊ตฌ์กฐ์ฒด)
l: ๋ชจ๋ธ์ ๋ง์ง๋ง ๋ ์ด์ด (๋ ์ด์ด ๊ตฌ์กฐ์ฒด)
side: ์ถ๋ ฅ ๊ทธ๋ฆฌ๋ ํ ๋ณ์ ๊ธธ์ด (์ ์)
classes: ๊ฐ์ฒด ์ข
๋ฅ ์ (์ ์)
jitter: ์ด๋ฏธ์ง ์๋ฅด๊ธฐ์ ์ฌ์ฉ๋๋ ์์์ ๊ฐ (์ค์)
plist: ์ด๋ฏธ์ง ํ์ผ ๊ฒฝ๋ก ๋ฆฌ์คํธ (๋ฆฌ์คํธ ๊ตฌ์กฐ์ฒด)
paths: ์ด๋ฏธ์ง ํ์ผ ๊ฒฝ๋ก ๋ฐฐ์ด (๋ฌธ์์ด ํฌ์ธํฐ ๋ฐฐ์ด)
args: load_data_in_thread ํจ์๋ก ์ ๋ฌ๋๋ ์ธ์๋ค (load_args ๊ตฌ์กฐ์ฒด)
load_thread: ์ด๋ฏธ์ง ๋ฐ ๋ ์ด๋ธ ๋ฐ์ดํฐ๋ฅผ ๋ก๋ํ๋ ์ค๋ ๋ (pthread_t)
time: ์๊ฐ ์ธก์ ์ ์ํ ๋ณ์ (clock_t)
loss: ํ์ฌ ๋ฐฐ์น์ ์์ค๊ฐ (์ค์)
buff: ๊ฐ์ค์น ํ์ผ ์ด๋ฆ ๋ฑ์ ์ ์ฅํ๋ ๋ฌธ์์ด ๋ฒํผ (๋ฌธ์์ด)
print_cocos
static void print_cocos(FILE *fp, int image_id, detection *dets, int num_boxes, int classes, int w, int h)
{
int i, j;
for(i = 0; i < num_boxes; ++i){
float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
if (xmin < 0) xmin = 0;
if (ymin < 0) ymin = 0;
if (xmax > w) xmax = w;
if (ymax > h) ymax = h;
float bx = xmin;
float by = ymin;
float bw = xmax - xmin;
float bh = ymax - ymin;
for(j = 0; j < classes; ++j){
if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
}
}
}
ํจ์ ์ด๋ฆ: print_cocos
์
๋ ฅ:
fp (FILE *) : ์ถ๋ ฅ ํ์ผ ํฌ์ธํฐ
image_id (int) : ์ด๋ฏธ์ง ID
dets (detection *) : ๊ฐ์ฒด ๊ฐ์ง ์ ๋ณด ๋ฐฐ์ด ํฌ์ธํฐ
num_boxes (int) : ๊ฐ์ฒด ๊ฐ์ง ์ ๋ณด ๋ฐฐ์ด์ ํฌ๊ธฐ
classes (int) : ํด๋์ค ์
w (int) : ์ด๋ฏธ์ง ๋๋น
h (int) : ์ด๋ฏธ์ง ๋์ด
๋์:
๊ฐ์ฒด ๊ฐ์ง ์ ๋ณด๋ฅผ COCO ํ์์ JSON ํ์ผ๋ก ์ถ๋ ฅํ๋ ํจ์์
๋๋ค.
๊ฐ ๊ฐ์ฒด์ ๋ํ ์ ๋ณด๋ "image_id", "category_id", "bbox", "score"์ 4๊ฐ์ง ์ ๋ณด๋ก ๊ตฌ์ฑ๋ฉ๋๋ค.
์ถ๋ ฅ ํ์ผ์ ์
๋ ฅ์ผ๋ก ๋ฐ์ ์ถ๋ ฅ ํ์ผ ํฌ์ธํฐ์ธ fp์ ์ถ๋ ฅ๋ฉ๋๋ค.
์
๋ ฅ์ผ๋ก ๋ฐ์ ๊ฐ์ฒด ๊ฐ์ง ์ ๋ณด ๋ฐฐ์ด ํฌ์ธํฐ dets๋ฅผ ์ด์ฉํ์ฌ bbox ์ ๋ณด๋ฅผ ๊ณ์ฐํ๊ณ , ๊ฐ ํด๋์ค์ ๋ํ ํ๋ฅ ์ ๋ณด๋ฅผ ์ด์ฉํ์ฌ COCO ํ์์ JSON ํ์ผ ํํ๋ก ์ถ๋ ฅํฉ๋๋ค.
์ค๋ช
:
COCO(Common Objects in Context) ๋ฐ์ดํฐ์
์ ๊ฐ์ฒด ๊ฐ์ง ๋ถ์ผ์์ ๋๋ฆฌ ์ฌ์ฉ๋๋ ๋ฐ์ดํฐ์
์ค ํ๋์
๋๋ค.
์ด ๋ฐ์ดํฐ์
์์ ์ฌ์ฉ๋๋ ๊ฐ์ฒด ๊ฐ์ง ์ ๋ณด์ ์ถ๋ ฅ ํ์์ธ COCO ํ์์ JSON ํ์ผ์ ์ถ๋ ฅํ๊ธฐ ์ํ ํจ์์
๋๋ค.
get_coco_image_id
int get_coco_image_id(char *filename)
{
char *p = strrchr(filename, '_');
return atoi(p+1);
}
ํจ์ ์ด๋ฆ: get_coco_image_id
์
๋ ฅ:
char *filename: COCO ๋ฐ์ดํฐ์
์ด๋ฏธ์ง ํ์ผ์ ๊ฒฝ๋ก๋ฅผ ๊ฐ๋ฆฌํค๋ ๋ฌธ์์ด ํฌ์ธํฐ
๋์:
์
๋ ฅ๋ ์ด๋ฏธ์ง ํ์ผ ๊ฒฝ๋ก์์ ์ด๋ฏธ์ง ID๋ฅผ ํ์ฑํ์ฌ ์ ์ํ์ผ๋ก ๋ฐํํฉ๋๋ค.
์ค๋ช
:
COCO ๋ฐ์ดํฐ์
์์ ์ด๋ฏธ์ง ํ์ผ์ ์ด๋ฆ์ 'COCO_[category][image_id].jpg'์ ๊ฐ์ ํํ๋ก ๊ตฌ์ฑ๋ฉ๋๋ค.
get_coco_image_id ํจ์๋ ์
๋ ฅ๋ ํ์ผ ๊ฒฝ๋ก์์ ''_" ๊ธฐํธ๋ฅผ ๊ธฐ์ค์ผ๋ก ๋ง์ง๋ง ๋ฌธ์์ด์ ์ถ์ถํ ๋ค, ์ด๋ฅผ ์ ์ํ์ผ๋ก ๋ณํํ์ฌ ๋ฐํํฉ๋๋ค.
์ด๋ ๊ฒ ์ถ์ถ๋ ์ซ์๋ ํด๋น ์ด๋ฏธ์ง์ ๊ณ ์ ํ ID๋ฅผ ๋ํ๋
๋๋ค.
validate_coco
void validate_coco(char *cfg, char *weights)
{
network *net = load_network(cfg, weights, 0);
set_batch_network(net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
srand(time(0));
char *base = "results/";
list *plist = get_paths("data/coco_val_5k.list");
//list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
//list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
layer l = net->layers[net->n-1];
int classes = l.classes;
char buff[1024];
snprintf(buff, 1024, "%s/coco_results.json", base);
FILE *fp = fopen(buff, "w");
fprintf(fp, "[\n");
int m = plist->size;
int i=0;
int t;
float thresh = .01;
int nms = 1;
float iou_thresh = .5;
int nthreads = 8;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
load_args args = {0};
args.w = net->w;
args.h = net->h;
args.type = IMAGE_DATA;
for(t = 0; t < nthreads; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
time_t start = time(0);
for(i = nthreads; i < m+nthreads; i += nthreads){
fprintf(stderr, "%d\n", i);
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for(t = 0; t < nthreads && i+t < m; ++t){
args.path = paths[i+t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
char *path = paths[i+t-nthreads];
int image_id = get_coco_image_id(path);
float *X = val_resized[t].data;
network_predict(net, X);
int w = val[t].w;
int h = val[t].h;
int nboxes = 0;
detection *dets = get_network_boxes(net, w, h, thresh, 0, 0, 0, &nboxes);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
print_cocos(fp, image_id, dets, l.side*l.side*l.n, classes, w, h);
free_detections(dets, nboxes);
free_image(val[t]);
free_image(val_resized[t]);
}
}
fseek(fp, -2, SEEK_CUR);
fprintf(fp, "\n]\n");
fclose(fp);
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
ํจ์ ์ด๋ฆ: validate_coco
์
๋ ฅ:
cfg: YOLO ๋ชจ๋ธ์ ์ค์ ํ์ผ ๊ฒฝ๋ก๋ฅผ ๋ํ๋ด๋ ๋ฌธ์์ด ํฌ์ธํฐ
weights: YOLO ๋ชจ๋ธ์ ๊ฐ์ค์น ํ์ผ ๊ฒฝ๋ก๋ฅผ ๋ํ๋ด๋ ๋ฌธ์์ด ํฌ์ธํฐ
๋์:
์ด ํจ์๋ COCO ๋ฐ์ดํฐ์
์์ ๊ฒ์ฆ์ ์ํํฉ๋๋ค. ์ฃผ์ด์ง cfg์ weights ํ์ผ๋ก๋ถํฐ YOLO ๋คํธ์ํฌ๋ฅผ ๋ก๋ํ๊ณ , COCO ๋ฐ์ดํฐ์
์ ์ด๋ฏธ์ง๋ฅผ ์ฝ์ด์ ์ด๋ฅผ ์ด์ฉํด ๊ฐ์ฒด ๊ฒ์ถ์ ์ํํฉ๋๋ค.
์ด ํจ์๋ ๊ฒ์ถ๋ ๊ฐ์ฒด๋ค์ ์์น์ ํด๋์ค ์ ๋ณด๋ฅผ coco_results.json ํ์ผ์ ์ ์ฅํฉ๋๋ค.
์ค๋ช
:
์ด ํจ์๋ YOLO ๋คํธ์ํฌ๋ฅผ ์ฌ์ฉํ์ฌ COCO ๋ฐ์ดํฐ์
์์ ๊ฐ์ฒด ๊ฒ์ถ์ ์ํํฉ๋๋ค.
์
๋ ฅ์ผ๋ก๋ YOLO ๋ชจ๋ธ์ ์ค์ ํ์ผ(cfg)๊ณผ ๊ฐ์ค์น ํ์ผ(weights)์ ๊ฒฝ๋ก๋ฅผ ๋ฐ์ต๋๋ค.
COCO ๋ฐ์ดํฐ์
์์ ๊ฒ์ฆ ์ด๋ฏธ์ง์ ๊ฒฝ๋ก๋ฅผ ๊ฐ์ง ๋ฆฌ์คํธ(plist)๋ฅผ ์ป์ ํ, ํด๋น ๊ฒฝ๋ก์ ์ด๋ฏธ์ง๋ค์ ์ฝ์ด๋ค์ฌ YOLO ๋คํธ์ํฌ๋ก ๊ฐ์ฒด ๊ฒ์ถ์ ์ํํฉ๋๋ค.
์ด ํจ์๋ ๊ฒ์ถ๋ ๊ฐ์ฒด๋ค์ ์์น์ ํด๋์ค ์ ๋ณด๋ฅผ coco_results.json ํ์ผ์ ์ ์ฅํฉ๋๋ค.
์ด ํจ์์์๋ ๋ค์ํ ๋ณ์๋ค์ ์ค์ ํ ์ ์์ต๋๋ค. threshold(thresh) ๋ณ์๋ ๊ฐ์ฒด ๊ฒ์ถ์ ์๊ณ๊ฐ์ ๋ํ๋ด๋ฉฐ, nms ๋ณ์๋ Non-Maximum Suppression(NMS)์ ์ํํ ์ง ์ฌ๋ถ๋ฅผ ๊ฒฐ์ ํฉ๋๋ค.
iou_thresh ๋ณ์๋ NMS์์ ์ฌ์ฉํ IoU ์๊ณ๊ฐ์ ๋ํ๋
๋๋ค. nthreads ๋ณ์๋ ์ฐ๋ ๋ ์๋ฅผ ๊ฒฐ์ ํฉ๋๋ค.
์ด ํจ์์์๋ COCO ๋ฐ์ดํฐ์
์ ๋ํ ์ ๋ณด๋ ์ฌ์ฉ๋ฉ๋๋ค. COCO ๋ฐ์ดํฐ์
์์๋ ์ด๋ฏธ์ง๋ง๋ค ๊ณ ์ ํ ID๊ฐ ์กด์ฌํ๋๋ฐ, ํด๋น ID๋ฅผ ์ฌ์ฉํ์ฌ ๊ฒ์ถ๋ ๊ฐ์ฒด๋ค์ ์ ๋ณด๋ฅผ coco_results.json ํ์ผ์ ์ ์ฅํฉ๋๋ค. ํด๋์ค ์ ๋ณด๋ฅผ ์ป๊ธฐ ์ํด์๋ YOLO ๋คํธ์ํฌ์ ๋ง์ง๋ง ๋ ์ด์ด(l)๋ฅผ ์ฌ์ฉํฉ๋๋ค.
validate_coco_recall
void validate_coco_recall(char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
srand(time(0));
char *base = "results/comp4_det_test_";
list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
char **paths = (char **)list_to_array(plist);
layer l = net->layers[net->n-1];
int classes = l.classes;
int side = l.side;
int j, k;
FILE **fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
char buff[1024];
snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
fps[j] = fopen(buff, "w");
}
int m = plist->size;
int i=0;
float thresh = .001;
int nms = 0;
float iou_thresh = .5;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for(i = 0; i < m; ++i){
char *path = paths[i];
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
int nboxes = 0;
detection *dets = get_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, &nboxes);
if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
for(k = 0; k < side*side*l.n; ++k){
if(dets[k].objectness > thresh){
++proposals;
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
float best_iou = 0;
for(k = 0; k < side*side*l.n; ++k){
float iou = box_iou(dets[k].bbox, t);
if(dets[k].objectness > thresh && iou > best_iou){
best_iou = iou;
}
}
avg_iou += best_iou;
if(best_iou > iou_thresh){
++correct;
}
}
free_detections(dets, nboxes);
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
free(id);
free_image(orig);
free_image(sized);
}
}
ํจ์ ์ด๋ฆ: validate_coco_recall
์
๋ ฅ:
cfgfile: YOLO ๋ชจ๋ธ์ ๊ตฌ์ฑ ํ์ผ ๊ฒฝ๋ก
weightfile: YOLO ๋ชจ๋ธ์ ๊ฐ์ค์น ํ์ผ ๊ฒฝ๋ก
๋์:
์ฃผ์ด์ง cfgfile๊ณผ weightfile์ ์ฌ์ฉํ์ฌ YOLO ๋ชจ๋ธ์ ๋ก๋ํ๋ค.
๋ฐฐ์น ํฌ๊ธฐ๋ฅผ 1๋ก ์ค์ ํ๋ค.
๋ฌด์์ ์๋๋ฅผ ์ด๊ธฐํํ๋ค.
ํ
์คํธ ์ด๋ฏธ์ง ๊ฒฝ๋ก๊ฐ ํฌํจ๋ ํ์ผ์ ์ฝ์ด์จ๋ค.
YOLO ๋ชจ๋ธ์์ ์ถ๋ ฅ ๊ณ์ธต์ ๊ฐ์ ธ์จ๋ค.
์ถ๋ ฅ ๊ณ์ธต์์ ํด๋์ค ์์ ๋คํธ์ํฌ ์ถ๋ ฅ ํฌ๊ธฐ๋ฅผ ๊ฐ์ ธ์จ๋ค.
coco_classes๋ผ๋ ๋ฐฐ์ด์ ์ฌ์ฉํ์ฌ ๊ฐ ํด๋์ค์ ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ ํ์ผ์ ์ด๊ณ ํ์ผ ํฌ์ธํฐ๋ฅผ fps ๋ฐฐ์ด์ ์ ์ฅํ๋ค.
ํ
์คํธ ์ด๋ฏธ์ง์ ์๋ฅผ ๊ณ์ฐํ๋ค.
YOLO ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ํ
์คํธ ์ด๋ฏธ์ง๋ฅผ ์์ธกํ๋ค.
์์ธก๋ ๊ฒฐ๊ณผ๋ฅผ ํ ๋๋ก NMS๋ฅผ ์คํํ์ฌ ์ค๋ณต๋ ๊ฒ์ถ ๊ฒฐ๊ณผ๋ฅผ ์ ๊ฑฐํ๋ค.
์ด๋ฏธ์ง์ ๋ํ ์ ๋ต ๋ ์ด๋ธ ํ์ผ ๊ฒฝ๋ก๋ฅผ ์์ฑํ๊ณ ๋ ์ด๋ธ ํ์ผ์ ์ฝ์ด๋ค์ธ๋ค.
๋คํธ์ํฌ ์ถ๋ ฅ๊ณผ ๋ ์ด๋ธ ํ์ผ์ ๋น๊ตํ์ฌ ํ๊ท IOU์ ์ ํ๋๋ฅผ ๊ณ์ฐํ๋ค.
์ค๋ช
:
์ด ํจ์๋ COCO ๋ฐ์ดํฐ์
์์ YOLO ๋ชจ๋ธ์ ๊ฒ์ถ ๊ฒฐ๊ณผ๋ฅผ ๊ฒ์ฆํ๋ ๊ธฐ๋ฅ์ ์ํํ๋ค. ์ฃผ์ด์ง cfgfile๊ณผ weightfile์ ์ฌ์ฉํ์ฌ YOLO ๋ชจ๋ธ์ ๋ก๋ํ๊ณ , ๊ฐ ํด๋์ค๋ง๋ค ๊ฒ์ถ ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ ํ์ผ์ ์ด๊ณ ํ์ผ ํฌ์ธํฐ๋ฅผ ์ ์ฅํ๋ค.
๊ทธ๋ฆฌ๊ณ ํ
์คํธ ์ด๋ฏธ์ง ๊ฒฝ๋ก๊ฐ ํฌํจ๋ ํ์ผ์ ์ฝ์ด์จ ํ, YOLO ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์์ธก์ ์คํํ๊ณ , NMS๋ฅผ ์ฌ์ฉํ์ฌ ์ค๋ณต๋ ๊ฒฐ๊ณผ๋ฅผ ์ ๊ฑฐํ ํ, ์ ๋ต ๋ ์ด๋ธ๊ณผ ๋น๊ตํ์ฌ ํ๊ท IOU์ ์ ํ๋๋ฅผ ๊ณ์ฐํ๋ค.
test_coco
void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
{
image **alphabet = load_alphabet();
network *net = load_network(cfgfile, weightfile, 0);
layer l = net->layers[net->n-1];
set_batch_network(net, 1);
srand(2222222);
float nms = .4;
clock_t time;
char buff[256];
char *input = buff;
while(1){
if(filename){
strncpy(input, filename, 256);
} else {
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
image im = load_image_color(input,0,0);
image sized = resize_image(im, net->w, net->h);
float *X = sized.data;
time=clock();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
int nboxes = 0;
detection *dets = get_network_boxes(net, 1, 1, thresh, 0, 0, 0, &nboxes);
if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80);
save_image(im, "prediction");
show_image(im, "predictions", 0);
free_detections(dets, nboxes);
free_image(im);
free_image(sized);
if (filename) break;
}
}
ํจ์ ์ด๋ฆ: run_coco
์
๋ ฅ:
argc (int): ๋ช
๋ นํ ์ธ์(argument)์ ์
argv (char **): ๋ช
๋ นํ ์ธ์ ๋ฐฐ์ด
๋์:
coco ๋ฐ์ดํฐ์
์ ์ฌ์ฉํ์ฌ ๊ฐ์ฒด ๊ฒ์ถ(object detection)์ ์คํํ๋ ํจ์์
๋๋ค. ํจ์์ ์ธ์๋ก๋ ๋ช
๋ นํ ์ธ์๋ฅผ ๋ฐ์์์ ํ์ํ ์ธ์๋ค์ ์ถ์ถํ๊ณ , ํด๋นํ๋ ๊ฒ์ถ ํจ์๋ฅผ ํธ์ถํฉ๋๋ค.
์ค๋ช
:
prefix (char *): "-prefix" ์ต์
์ผ๋ก ์ฃผ์ด์ง ๋ฌธ์์ด
thresh (float): "-thresh" ์ต์
์ผ๋ก ์ฃผ์ด์ง ์ค์๊ฐ (๊ธฐ๋ณธ๊ฐ 0.2)
cam_index (int): "-c" ์ต์
์ผ๋ก ์ฃผ์ด์ง ์ ์๊ฐ (๊ธฐ๋ณธ๊ฐ 0)
frame_skip (int): "-s" ์ต์
์ผ๋ก ์ฃผ์ด์ง ์ ์๊ฐ (๊ธฐ๋ณธ๊ฐ 0)
cfg (char *): coco ๊ฒ์ถ์ ์ํ darknet configuration ํ์ผ ๊ฒฝ๋ก
weights (char *): coco ๊ฒ์ถ์ ์ํ darknet ๊ฐ์ค์น ํ์ผ ๊ฒฝ๋ก (์ต์
)
filename (char *): coco ๊ฒ์ถ ๋์ ์ด๋ฏธ์ง/๋น๋์ค ํ์ผ ๊ฒฝ๋ก (์ต์
)
avg (int): "-avg" ์ต์
์ผ๋ก ์ฃผ์ด์ง ์ ์๊ฐ (๊ธฐ๋ณธ๊ฐ 1)
coco_classes (char **): coco ํด๋์ค ์ด๋ฆ ๋ฐฐ์ด
80: coco ๋ฐ์ดํฐ์
์ ํด๋์ค ์
.5: NMS (Non-Maximum Suppression) ์๊ณ๊ฐ
0,0,0,0: yolo_eval ํจ์์ ์ ๋ฌ๋๋ ์ธ์ (์ฌ์ฉํ์ง ์์)
run_coco
void run_coco(int argc, char **argv)
{
char *prefix = find_char_arg(argc, argv, "-prefix", 0);
float thresh = find_float_arg(argc, argv, "-thresh", .2);
int cam_index = find_int_arg(argc, argv, "-c", 0);
int frame_skip = find_int_arg(argc, argv, "-s", 0);
if(argc < 4){
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
return;
}
char *cfg = argv[3];
char *weights = (argc > 4) ? argv[4] : 0;
char *filename = (argc > 5) ? argv[5]: 0;
int avg = find_int_arg(argc, argv, "-avg", 1);
if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, prefix, avg, .5, 0,0,0,0);
}
ํจ์ ์ด๋ฆ: run_coco ์
๋ ฅ:
argc: intํ ๋ณ์. ๋ช
๋ นํ ์ธ์์ ๊ฐ์๋ฅผ ๋ํ๋ธ๋ค.
argv: charํ ํฌ์ธํฐ ๋ฐฐ์ด. ๋ช
๋ นํ ์ธ์๋ฅผ ๊ฐ๋ฆฌํค๋ ํฌ์ธํฐ ๋ฐฐ์ด์ด๋ค.
๋์:
coco ๋ฐ์ดํฐ์
์ ์ด์ฉํ์ฌ YOLOv3 ๋ชจ๋ธ์ ํ์ตํ๊ฑฐ๋ ๊ฒ์ฆํ๊ฑฐ๋, ํ
์คํธํ๊ฑฐ๋, ๋ฐ๋ชจ๋ฅผ ์คํํ๋ค.
์ค๋ช
:
์ด ํจ์๋ argc์ argv๋ฅผ ํตํด ์ ๋ฌ๋ ์ธ์๋ค์ ์ฒ๋ฆฌํ์ฌ coco ๋ฐ์ดํฐ์
์ ์ด์ฉํ์ฌ YOLOv3 ๋ชจ๋ธ์ ํ์ตํ๊ฑฐ๋ ๊ฒ์ฆํ๊ฑฐ๋, ํ
์คํธํ๊ฑฐ๋, ๋ฐ๋ชจ๋ฅผ ์คํํ๋ค.
ํจ์ ๋ด๋ถ์์๋ ์
๋ ฅ์ผ๋ก ์ ๋ฌ๋ ์ธ์๋ค์ ์ฒ๋ฆฌํ๊ธฐ ์ํด find_char_arg(), find_float_arg(), find_int_arg()์ ๊ฐ์ ํจ์๋ค์ด ์ฌ์ฉ๋๋ฉฐ, ์ธ์๋ค์ ๊ฐ์ ๋ฐ๋ผ ๋ค์ํ ๊ธฐ๋ฅ์ ์ํํ๊ฒ ๋๋ค.
๋ง์ฝ ์ธ์์ ๊ฐ์๊ฐ ๋ถ์กฑํ๋ฉด ์ค๋ฅ ๋ฉ์์ง๋ฅผ ์ถ๋ ฅํ๊ณ ํจ์๋ฅผ ์ข
๋ฃํ๋ค.